
Modular GPU Programmingwith Typed Perspectives

MANYA BANSAL,Massachusetts Institute of Technology, United States of America
DANIEL SAINATI, University of Pennsylvania, United States of America
JOSEPHW. CUTLER, University of Pennsylvania, United States of America
SAMAN AMARASINGHE,Massachusetts Institute of Technology, United States of America
JONATHAN RAGAN-KELLEY,Massachusetts Institute of Technology, United States of America

To achieve peak performance on modern GPUs, one must balance two frames of mind: issuing instructions to
individual threads to control their behavior, while simultaneously tracking the convergence of many threads
acting in concert to perform collective operations like Tensor Core instructions. The tension between these two
mindsets makes modular programming error prone. Functions that encapsulate collective operations, despite
being called per-thread, must be executed cooperatively by groups of threads.

In thiswork,we introducePrism, anewGPU language that restoresmodularitywhile still givingprogrammers
the low-level control over collective operations necessary for high performance. Our core idea is typed perspec-
tives, which materialize, at the type level, the granularity at which the programmer is controlling the behavior
of threads. We describe the design of Prism, implement a compiler for it, and lay its theoretical foundations
in a core calculus called Bundl. We implement state-of-the-art GPU kernels in Prism and find that it offers
programmers the safety guarantees needed to confidently write modular code without sacrificing performance.

1 Introduction
CUDA [39] is a low-level, imperative programming language for NVIDIA GPUs. These GPUs are
organized into a hierarchy of compute resources. Threads are the basic unit of sequential execution,
blocks are groups of threads that can cooperate through shared scratchpad memory, and the grid is
the full collection of blocks launched for a computation. A GPU program executes in parallel across
this hierarchy, but is written from the perspective of a single thread.
While operations are specified per-thread, some are only valid when executed collectively by a

group of threads. The __syncthreads() intrinsic, for instance, synchronizes all threads within a
block, and it will cause a deadlock if executed by only some of those threads. There are many such
collective intrinsics, including Tensor Core instructions [41–43], warp shuffle operations [22], and
other kinds of synchronization primitives [21]. These operations require programmers to carefully
marshal compute resources to coordinate which threads execute which lines of code. As a result,
such collective operations break the illusion of threads executing independently.
The conceptual clash between regular statements (executed by a single thread) and collective

operations (executed by a groupof threads) impacts not only hardware intrinsics, but alsouser-defined
collective operations, like functions. While functions are invoked individually by threads, they may
encapsulate collective behavior, creating a contradiction between the per-thread syntax of their
invocation and the cooperative semantics of their execution.

This contradiction puts modularity at odds with correctness and is apparent even in widely used
CUDA libraries that package common functionality via function interfaces [13, 38, 51]. Consider the
following snippet of documentation taken directly from CUB [38], a library of parallel primitives.
It describes the BlockReduce function [11], in which all threads in a block collaboratively apply a
reduction operation, such as a maximum or prefix sum, over an array:
Computes a block-wide reduction for thread0 using the specified binary reduction functor.

• The return value is undefined in threads other than thread0.
• A subsequent __syncthreads() threadblock barrier should be invoked after calling this method if the collective’s

temporary storage (e.g., temp_storage) is to be reused or repurposed.

The snippet above attempts to convey several assumptions implicit in BlockReduce’s implemen-
tation. First, the function is only well definedwhen invoked by all threads in a block. Second, because
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it accesses memory shared among threads, any subsequent reuse of that storage requires synchro-
nization to ensure all threads have completed their accesses. In effect, CUB attempts to retrofit CUDA
with information about the compute andmemory requirements of collective operations. By prefixing
functions with identifiers such as Block, CUB creates ad-hoc “namespaces” for different functions
that assume similar invariants. However, without a type system to statically enforce these invariants,
correct usage of this function—and collective operations in general—depends on carefully reading
and interpreting the documentation.

In this work, we ask: can we provide low-level control over collective operations while statically
guaranteeing that they execute with the necessary compute resources? By reifying configurations
of compute resources as type-level perspectives—so named because they describe the view of GPU
resources against which each statement is written—we find that we can. Our key insight is that GPU
programmers naturally map computations onto different compute resources, and, unlike CUDA,
which obscures thismapping,we can track itwith a type system. This tracking enforces that collective
operations are executed with the necessary resources, while still allowing users to access low-level
intrinsics. Further, it allows users to define and compose their own collective operations by specifying
the perspective with which their code must be run.
Our approach departs from previous work, which attempts to resolve the mismatch between

per-thread syntax and collective execution by restricting access to low-level operations. Tile-based
languages like Triton [54], Helion [44], and Tilus [26], limit the user’s perspective to the block
level, which prevents them fromwriting the highest-performance kernels. A variety of functional
languages, [7, 27, 32] provide compile-time guarantees through their type systems but do not expose
low-level control over hardware. Some other efforts, like Descend [35], aim to provide a low-level,
memory-safe GPU systems programming language, but lack support for modern GPU features (like
Tensor Cores or asynchrony) entirely. As a result, despite its flaws, CUDA remains the de-facto
standard for writing high-performance kernels on modern GPUs [23].

We introduce Prism, a new low-level GPUprogramming language that enforces that operations are
only executedwith the correct viewof hardware resources, enabling fearless composition. Inspired by
dependency calculi [1], Prism statically tracks the configurations of compute and memory resources
with type-level perspectives. We also develop Bundl, a core calculus underpinning Prism, provide
formal rules for manipulating the perspectives of both code and data, and prove type-and-perspective
safety. This ensures that Bundl is sound, and that code always has the right perspective to execute
operations at run time. A parallel goal, alongside safe composition, is performance. We incorporate
modern GPU features such as Tensor Cores and asynchronous data movement into Prism, and
demonstrate that Prism can achieve the same performance as hand-written, highly optimized code
on an H100 and a 4070 Ti Super. Our contributions are:

(1) Prism, a low-level GPU language that tracks the logical grouping of compute and memory
resources with type-level perspectives, empowering users to write modular code (Section 3);

(2) Bundl, a formal model of Prism that tracks perspectives in its type system and operational se-
mantics, alongwitha soundness theoremguaranteeing thatprogramsexecuteoperationsonly
when they have been statically proven to possess the necessary perspective (Section 4); and

(3) An implementation of Prism (Section 5) that demonstrates that it can support modern GPU
features like Tensor Cores and asynchronous data movement, achieving performance com-
parable to hand-optimized CUDA implementations (Section 6).

Section 7 discusses related work, and Section 8 discusses the limitations of our approach and
outlines future work.
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1 int tid = threadIdx.x;
2 if (tid >= 0 && tid < 32){
3 float A[4], B[2];
4 float C[4] = { 0 };
5 // Populate A with unique values.
6 for (int i = 0; i < 4; i++)
7 A[i] = tid * 4 + 1;
8 // Populate B with unique values.
9 for (int i = 0; i < 2; i++)
10 B[i] = tid * 4 + 1;
11 // Issue a warp-level Tensor Core
12 // operation: D = A * B + C
13 // (eliding some typecasts).
14 asm("mma.sync.aligned.m16n8k8..."
15 "{%0, %1, %2, %3}, " /*D*/
16 "{%4, %5, %6, %7}, " /*A*/
17 "{%8, %9}, " /*B*/
18 "{%10, %11, %12, %13};" /*C*/
19 : "=r"(C[0]),"=r"(C[1]), ...
20 : "r"(A[0]), "r"(A[1]), ...
21 "r"(B[0]), "r"(B[1]),
22 "r"(C[0]), "r"(C[1]), ...);}

Fig. 1. Warp-level Tensor Core
instruction in CUDA.

1 tid : int @ thread[1] = id();
2 with group(thread[32]):
3 A : float[4] @ thread[1]
4 B : float[2] @ thread[1]
5 C : float[4] @ thread[1]
6
7 # Populate A with unique values
8 for i in range(0, 4, 1):
9 A[i] = tid * 4 + 1
10 C[i] = 0
11 # Populate B with unique values
12 for i in range(0, 2, 1):
13 B[i] = tid * 4 + 1
14
15 # Issue Tensor Core op.
16 intrinsic.mma(
17 A[0], A[1], A[2], A[3],
18 B[0], B[1],
19 C[0], C[1], C[2], C[3],
20 out=[A[0], A[1], A[2], A[3]])
21
22

Fig. 2. Warp-level Tensor Core
instruction in Prism.
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Fig. 3. The @ syntax represents the fre-
quency at which a variable varies across
threads T1-T8. Each @ denotes a coloring
of thevariable; threads that “view” thevari-
able with the same color must observe the
same value.

2 Background &Motivation
Before diving into the design of Prism,we beginwith an overview of the GPU’s compute andmemory
hierarchies and outline the challenges posed by reasoning about them collectively. We also discuss
how Prism can help solve these problems.

2.1 Compute Hierarchy
In CUDA, programmers launch computations that run on thousands of threads. These threads

are organized into a compute hierarchy that defines howwork is distributed and scheduled on the
GPU. At the top of this hierarchy is the grid, representing all threads launched as part of a single
computation. The grid is divided into blocks, each containing a user-specified number of threads.
Threads are the finest unit of execution and the machine’s basic unit of sequential control.

Usersdescribeacomputationbywritinga singleprogramwhich is replicatedacross all threads.This
programcontrols the behavior of individual threads by reading built-in identifiers likethreadIdx.x—
to determine a thread’s position within a block—and blockIdx.x—to determine the block’s position
within the grid—at runtime. By making control flow decisions based on these two variables, users
can assign each thread to its share of the full computation.

A natural and temptingway to interpret these built-in variables is to think of them as the indices of
implicit "parallel-for loops" surrounding the program, where each iteration executes simultaneously.
While this view is sufficient tounderstandCUDA’s programmingmodelwhen threads do independent
work, it quickly breaks down in the presence of collective operations.

Unlike most instructions, which are executed by a single thread, collective operations must be
executed collaboratively by a group of threads. For example, on line 14 of Figure 1, we perform a
Tensor Core operation [43], which is only meaningful when invoked by a collection of 32 threads—a
warp—acting together. For the call, each thread sets up its portion of the operands, and the operation
is performed once for the entire warp, with the results scattered across participating threads. In
this example, the first 32 threads in a block are tasked with this operation; programmers mentally
group these 32 threads into a collective unit, and then reflect that grouping in the program via the if-
statementon line 2. If the conditionon line 2were insteadtid >= 0 && tid < 30,making fewer than32
threads reach line 14, the resultwould be undefined. Tomakemattersworse, the restriction is not only
on the number of threads executing the operation, but also on their alignment. For threads to form a
warp, the starting ID of the groupmust be aligned to amultiple of 32. So, if the condition on line 2were
insteadtid >= 1 && tid < 33, the resultwould still be invalid, even though32 threadswouldexecute it.
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Collective operations make reasoning about CUDA programs challenging because they force pro-
grammers to track the convergence behavior of threads. Specifically, programmers must reason both
about howmany threads reach each in the program and how those threads are arranged, accounting
for alignment. This difficulty is further amplified by two factors. First, programs may have multiple
points of convergence, requiring programmers to mentally track the relative ID of a thread within
a logical group as that group evolves over the course of a program’s execution. Second, threads may
be participating in multiple levels of convergence within the same program. In our example, we
only considered the warp-level Tensor Core operation, but there are other collective operations that
require convergence at different granularities likewarpgroup-level Tensor Core operations—which
must be issued collectively by four warps—or the block-level __syncthreads() primitive—which
must be executed by all threads within a block.

Reasoning about collective operations is already error pronewithin the context of a single function,
but becomes even more difficult when reasoning across functions. A callee may assume a certain
configuration of threads and may structure its computation around that assumption. However, such
assumptions are not visible in the callee’s function interface, which only exposes the input and
output types. To invoke the function correctly, users must read its documentation—or worse, its
implementation—to understand its assumptions, breaking modular reasoning.
In Prism, we materialize the programmer’s mental grouping of the compute hierarchy explicitly

in the program’s source. Consider the example in Figure 2, which shows an equivalent rewrite of the
CUDAprogram in Figure 1 using Prism. The call to the mma is valid only because it is executedwithin a
group of 32 threads, made explicit on line 2. This intrinstic exposes its invariant via its function signa-
ture,whichwewill discuss indetail in Section3.6. SincePrism’sgroup construct enforces both the size
and alignment of participating threads, the validity of themmaoperation is guaranteedby construction.
However, it is not sufficient to only consider the compute hierarchy when reasoning about con-

vergence; we must consider the memory hierarchy as well. Whenever threads see different data,
they can use it to induce divergent behavior. We’ve already seen an example of this: the tid variable
in Figure 1. In general, the possibility of divergence lurks anywhere threads branch on data.

2.2 Data and theMemory Hierarchy
Data on the GPU is organized into amemory hierarchy, mirroring the compute hierarchy. All threads
in a grid can read and write from global memory, where operands reside at the start of a computation
andwhere results are eventuallywritten. Each block has access to a limited amount of sharedmemory,
a programmer-managed scratchpad typically used to stage repeatedly-used data. Finally, each thread
maintains its own state in registers and local memory. These are private to each thread, while shared
and global memory are accessible by multiple threads.

Thread-Local Data. Registers and local memory are owned by individual threads, so variables with
the same name can have different values on different threads at run time. In general, CUDA offers
no support for dealing with the divergence that arises as a consequence.
A key challenge for Prism is managing this divergence, ensuring that all threads organized by

other language constructs like group remain logically unified, even in the face of data-dependent
control flow. To do this, Prism tracks the frequency with which values vary in space. The @ syntax
attached to each declaration denotes this frequency. For example, thread[1] variables can vary for
every thread,while block[1] variables can vary for every block, but not for threadswithin that block.
Intuitively, the @ construct “colors” a variable across threads, and any threads that share a color are
required to agree on that variable’s value. Figure 3 illustrates valid and invalid colorings of a variable.
Using this information, Prism enforces rules for reading from and writing to variables. So, for

example, if we introduce a condition based on tid inside the group’s scope in Figure 2, Prismwill
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reject that program; code that diverges at low frequency cannot read from variables that change at
higher frequency. We explain the rules of Prism programs in detail in Section 3.

1 int x = threadIdx.x;
2 if (x >= 0 && x< 32){
3 float A[4], B[2];
4 float C[4] = { 0 };
5
6 // k is a_mem's stride.
7 A[0] = a_mem[(x/4)*k+(x%4)]);
8 A[1] = a_mem[(x/4)*k+(x%4)+4]);
9 A[2] = a_mem[(x/4+8)*k+(x%4)]);
10 A[3] = a_mem[(x/4+8)*k+(x%4)+4]);
11
12 // n is b_mem's stride.
13 B[0] = b_mem[(x%4)*n+(x/4)]);
14 B[1] = b_mem[(x%4+4)*n+(x/4)]);
15
16 asm("mma.sync...");
17
18 // Write back into c_mem.
19 // n is c_mem's stride.
20 c_mem[(x/4)*n+2*(x%4)] = C[0];
21 c_mem[(x/4)*n+2*(x%4)+1] = C[1];
22 c_mem[(x/4+8)*n+2*(x%4)] = C[2];
23 c_mem[(x/4+8)*n+2*(x%4)+1]=C[3];
24
25 __syncwarp();}

Fig. 4. Invoking a warp-level Tensor
Core instruction inCUDAafter loading
data frommemory.

1 @prism("device")
2 @requires(thread[32])
3 def simple_mma(
4 a: ptr(const(float)) @ thread[32],
5 b: ptr(const(float)) @ thread[32],
6 c: ptr(float) @ thread[32]):
7 x : int @ thread[1] = id()
8 with group(thread[32]):
9 A : float[4] @ thread[1]
10 B : float[2] @ thread[1]
11 C : float[4] @ thread[1]
12 # Reads do not need to be lowered.
13 A[0] = a_mem[(x/4)*k+(x%4)]);
14 A[1] = a_mem[(x/4)*k+(x%4)+4]);
15 A[2] = a_mem[(x/4+8)*k+(x%4)]);
16 A[3] = a_mem[(x/4+8)*k+(x%4)+4]);
17 B[0] = b_mem[(x%4)*n+(x/4)]);
18 B[1] = b_mem[(x%4+4)*n+(x/4)]);
19 # Skipping initialize C to 0...
20 intrinsic.mma(
21 A[0], A[1], A[2], A[3],
22 B[0], B[1],
23 C[0], C[1], C[2], C[3],
24 out=[C[0], C[1], C[2], C[3]])
25 # Must be at thread[1] to write.
26 idx = \
27 lambda ro, co: (x/4+ro)*n+2*(x%4)+co
28 with

partition(c_mem,p=thread[32],f=idx)
as c_thrd:

↩→
↩→

29 c_thrd[0, 0] = C[0]
30 c_thrd[0, 1] = C[1]
31 c_thrd[8, 0] = C[2]
32 c_thrd[8, 1)] = C[3]
33 # --- Sync point ---

Fig. 5. Invoking a warp-level Tensor
Core instruction in Prism after loading
data frommemory.

Thread-SharedData. Shared andglobalmemory, on theother
hand, is not replicated per-thread; instead, all threads in a block
have the same view into shared memory, while all threads on
the grid have the same view into global memory.
CUDA does not explicitly model shared and global mem-

ory spaces, nor does it track whether allocations in a given
memory space exceed device limits. Prism, on the other hand,
distinguishes these spaces and restricts sharedmemory to static
allocations, throwing an error if an allocation exceeds device
limits. We will discuss these aspects in detail in Section 3.4. For
now, however, we focus on how views of memory converge
and diverge in tandemwith the compute hierarchy.

As an example,when launching a kernel on theGPU, a global
memory pointer initially belongs to the grid because every
thread sees the same pointer value at the start of the computa-
tion. To write to that memory, each thread computes an offset
from the original base address. In doing so, the pointer effec-
tively diverges across threads so each can write independently.
After these writes, the view on the memory must reconverge,
ensuring that all threads have completed their updates before
it can return to its original logical owner.
Let us reconsider the Tensor Core example from Figure 1,

this time initializing the operands of the Tensor Core operation
from pointers into global memory. In Figure 4, A and B are
now populated from a_mem and b_mem. After the Tensor Core
operation completes, the result is written back to c_mem, also in
global memory. This variable c_mem is logically accessed from
two different levels of the compute hierarchy. At the beginning,
each thread in agroupof 32 sees the samevalue forc_mem. Then,
they each locate an offset within c_mem that theywrite to (lines
20-23). To restore c_mem back to its 32 thread-level ownership,
all 32 threadsmust synchronize (line 25) to ensure all per-thread
writes have completed. This is similar to the requirement we
saw documented in CUB in Section 1.

Similarly to the compute hierarchy, CUDA programmers are
responsible for tracking the logical owner of a view of memory
as it evolves over the course of a program, and for ensuring that
appropriate synchronization occurs.
Prism, by contrast, makes the evolution of memory’s view

explicit in the syntax and automatically inserts the synchro-
nization required to restore that view to its original owner.
In Figure 5, we show howmemory is lowered through the compute hierarchy for the same Tensor
Core operation fromFigure 4. The loweringof c_mem is required in this programasPrismonly permits
writes from the view of a single thread. To lower c_mem, we use Prism’s partition operation on line
28. The operation takes a pointer to partition, c_mem, and lowers it to a single thread, assigning it a
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1 @prism("global")
2 # Top-level perspective bounds and shared memory usage.
3 @requires(grid[1], block[1], thread[32], smem=1280)
4 def mmaTF32NaiveKernel(A: ptr(const(float)) @ grid[1],
5 B: ptr(const(float)) @ grid[1],
6 C: ptr(float) @ grid[1],
7 M : int @ grid[1],
8 N : int @ grid[1],
9 K : int @ grid[1]):
10
11 # Starts out with grid[1] perspective.
12 with group(grid[1]):
13 # @ grid[1] inferred from current perspective
14 # Each block computes an 16 x 8 tile
15 num_blocks_n : const(int) = (N + 8 - 1) / 8
16
17 # id() function returns the block id
18 # inferred from @ block[1].
19 blk_row : const(int) @ block[1] = (id()/num_blocks_n)*16
20 blk_col : const(int) @ block[1] = (id()%num_blocks_n)*8
21
22 # Give each block an offset into C
23 offset = lambda x: blk_row * N + blk_col + x
24 with partition(C, p=block[1], f=offset) as C_blk:
25 with group(block[1]):
26 # SHMEM declarations are only allowed
27 # with a block[1] perspective.
28 A_smem : shared(float[16 * 8]) @ block[1]
29 B_smem : shared(float[8 * 8]) @ block[1]
30 C_smem : shared(float[16 * 8]) @ block[1]
31 # Now, id() returns the thread id
32 idx = lambda x: x * 4
33 # To write to C_smem, drop to thread[1] perspective
34 with partition(C_smem,p=thread[1],f=idx) as C_th:
35 for i in range(0, 4, 1):
36 with group(thread[1]):
37 C_th[i] = 0

38 for i in range(0, K_tiles, 1):
39
40 # --- Sync point --- (backedge from for loop)
41 for j in range(0, 4, 1):
42 global_row : int @ thread[1] = blk_row + row
43 global_col: int @ thread[1] = i * 8 + col
44 with partition(A_smem, p=thread[1], f=..) as A_th:
45 with group(thread[1]):
46 A_thrd[0] = A[global_row * K + global_col]
47
48 # --- Sync point --- (backedge from for loop)
49 for j in range(0, 2, 1):
50 # Similar to write into A_smem ...
51 with partition(B_smem,p=thread[1],f=...) as B_th:
52 with group(thread[1]):
53 B_th[0] = B[global_row_b * N + global_col_b]
54
55 # Give each warp an offset into C_smem.
56 # --- Sync point --- (backedge from for loop)
57 with claim(C_smem, p=thread[32]) as Cs_warp:
58 match split(thread): # Masks off other threads
59 case 32:
60 # Call function that performs a
61 # Tensor Core instruction.
62 simple_mma(A_smem, B_smem, Cs_warp)
63 # --- Sync point ---
64
65 for j in range(0, 4, 1):
66 flat_idx_c : int @ thread[1] = id() * 4 + j
67 row_c : int @ thread[1] = flat_idx_c / MMA_K
68 col_c : int @ thread[1] = flat_idx_c % MMA_K
69 idx = lambda x: row_c * N + col_c + x
70 with partition(C_blk, p=thread[1], f=idx) as C_th:
71 with group(thread[1]):
72 C_th[0] = C_smem[row_c * MMA_N + col_c]
73
74 return

Fig. 6. Naive tensor float 32 matrix multiplication in Prism (full program can be found in Appendix B.1).

new name, c_thrd; Prism will not allow use of the old variable c_memwithin the partition’s scope.
The partition also takes an indexing function, and each time c_thrd is accessed, this function is
implicitly applied. Once the partition’s scope ends, Prism inserts a synchronization barrier before
the next use of the original variable, so that all per-thread writes have completed. In this way, at the
end of the partition, the original variable represents a convergent view of the data once again.

3 The Prism Language
Prism is an imperative, low-level language designed at a level of abstraction comparable to that of
CUDA. Unlike CUDA, however, Prism’s syntax materializes the mapping of computations onto the
compute and memory hierarchy explicitly in the program source. Using this information, Prism
enforces that programs only execute collective operations with sufficient resources.

To guide our discussion about Prism’s design, we use the program in Figure 6 as a running example.
It computes a matrix multiplication between two float arrays, A and B, to produce an output matrix C.
In this program, each block computes an independent 16×8 tile of the output. To do so, blocks first
locate the tile index assigned to them (line 19-20). Next, threads in each block load corresponding
rows and columns from A and B (line 41-53) into shared memory. Finally, the program invokes a
warp-level, Tensor Core instruction to compute the output (line 62), requiring threads in a warp to
converge. We encapsulate this Tensor Core instruction in a function, demonstrating how function
composition works in Prism. This function is the same as the one in Figure 5.

3.1 Levels
Prismmodels the machine’s compute hierarchy through levels. There are three levels in Prism—grid,
block and thread—which are organized as expected: a grid consists of multiple blocks, each of
which consist of multiple threads. Levels are ordered, with thread < block < grid.
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There are two key differences between Prism’s levels and those in CUDA. First, Prism does not
model CUDA’s three-dimensional grid or block structure. Second, there are two commonly-used
“levels”, warp and warpgroup, absent from our hierarchy. On the hardware, the units of each level are
arranged in a linear order, and the three-dimensional structures of CUDA are simply interpretations
of this ordering, not distinct hardware resources. Similarly, warps andwarpgroups are organizational
constructs defined in terms of existing levels. Namely, a warp is a group of 32 threads whose first
thread ID is aligned to 32. A warpgroup, which was introduced with the release of the Hopper
architecture [8], consists of 4 consecutive warps.

Rather than baking these interpretations into Prism by adding new dimensions and levels, we let
users express multi-dimensional structures and define groupings of custom sizes.
3.2 Perspectives
Perspectives are the central concept of Prism, representing the view of the hierarchy fromwhich a
given statement is defining the machine’s behavior. Perspectives allow Prism to determine which
compute resources the programmer is controlling at every point in the program, whether they are
available in the program’s context, and if those resources are sufficient for a given operation.
A perspective is a level—grid, block, or thread—paired with a static constant n, specifying the

number of units at that level. For example,thread[2] denotes a perspective of two threads,block[4]
denotes a perspective of four blocks, and so on. Perspectives also carry alignment information: a
perspective of size n is aligned to n. In this way, a warp is simply a desugaring of thread[32], and a
warpgroup is a desugaring of thread[128].

Finally, perspectives are partially ordered. We say that level2[n2] is broader than level1[n1], or
that level1[n1] is narrower than level2[n2], if either:

(1) level1 < level2; or,
(2) level1 = level2 and n1 divides n2.

3.3 Perspectives on Code
Code is associated with a set of perspectives, called a perspective bound, which corresponds to the
compute resources whose behavior it defines. At every point in the program, the perspective bound
for that point indicates which layer of the hierarchy is being programmed, and how that layer can be
destructed into narrower perspectives. For example, a line of code with a {block[1], thread[4]}
perspective bound tells Prism that the current line of code is being programmed at the block[1]
perspective and that the block[1] perspective can be destructed into a some number of thread[4]
perspectives.As a shorthand,whenwe refer to a code’s perspective,wemean the broadest perspective
available in its perspective bound (in this example, block[1]).

Functions begin with a top-level perspective bound. In Figure 6, the perspective bound is defined
on line 2, using the notation @requires(grid[n1],block[n2],thread[n3]). Programmers can
then shape the program’s current perspective using two constructs: group and split.

Group. The group construct lets programmers shift from a broader perspective to some number
of narrower perspectives contained in it. Operationally, the group construct does this by replicating
code written from the narrower perspective across the broader one. In effect, group forks many
copies of a narrower perspective.

1 # Example 1
2 with group(thread[2]):
3 # Illegal because block > thread.
4 with group(block[1]):
5 pass
6 # Example 2
7 with group(block[6]):
8 # Illegal because 6 % 5 != 0.
9 with group([block[5]]):
10 pass

Fig. 7. Illegal uses of group.

Let’s consider this in context of our example. In Figure 6, execution
begins at grid[1] on line 12. At that point, a programmer controls
the whole grid’s behavior. To produce different output tiles, the
programmer shifts their perspective to block[1] on line 25. The
code within the group(block[1]) defines the behavior of a single
block, and is replicated across all blocks in the grid.
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Not all uses of group are valid: the examples in Figure 7 have no meaning on the hardware. On
line 4, the program tries to broaden its perspective to block[1] from thread[2], which is illegal. On
the other hand, in the second example, the program tries to narrow its perspective from block[6] to
block[5]. While 5 is indeed less than 6, Prism cannot evenly replicate block[5] across a block[6]
perspective, and so rejects this program. Recall, from Section 3.2, that whether one perspective is
narrower than another is dependent on divisibility, not just size.
To eliminate such cases, Prism only allows an invocation of group(level[n]) if the current

perspectiveboundcontainsaperspectivebroader thanlevel[n].Oncegroup(level[n]) is invoked,
it modifies the current perspective bound in two ways. First, it removes all perspectives broader than
level[n] from it. Second, it sets the broadest perspective within the group to be level[n].

1 with group(thread[4]):
2 match split(thread):
3 case 2:
4 ...
5 case 1:
6 ...
7 case 1:
8 ...

Fig. 8. Example split.

1 with group(thread[4]):
2 match split(thread):
3 case 4:
4 ...
5 case 1:
6 ...

Fig. 9. Illegal split exceeds
the available perspectives.

1 with group(thread[3]):
2 match split(thread):
3 case 1:
4 ...
5 case 2:
6 ...

Fig. 10. Illegal split violates
alignment.

Split. Unlike group, which is used for replication into equally-sized,
narrower perspectives, split is used for sharding the current perspective
unequally. For example, Figure 8 shows a split from thread[4] into
one branch with thread[2] perspective and two with thread[1]. The
three arms of the split execute independently in parallel,1 as a form of
unordered composition. When split(level) is invoked, the perspec-
tives of its branches diverge. At the end of the split, they reconverge
and continue execution with the original perspective.
Use of split is necessary to write warp-specialized [4] code, a pro-

gramming pattern used in high-performance kernels. Another important
use of split—masking off threads—can be found in our running example.
Line 58 in Figure 6 shows a split that requests the first warp in the block,
narrowing from block[1] into a single thread[32]. This warp is later
used to execute a Tensor Core operation.

Because split corresponds to unordered composition, it must provide
each of its branches their requested perspectives simultaneously. Prism
thus checks that the sum of the perspectives requested by all branches
of the split can be satisfied. For example, the program in Figure 9 does
not type check. Finally, because perspectives enforce alignment, every
branch of the splitmust also be aligned; not all splits whose sizes are at most the available units
are valid. Figure 10 shows an example violating this constraint: the second branch of the split is not
aligned to 2.
Once split is invoked, for each branch that requests n units, all perspectives broader than

level[n] are removed from its perspective bound, and the available units for level are set to n.

3.4 Perspectives on Data
Section 3.2 described how programmers can control different layers of the hierarchy by changing
their perspectives on code through group and split. To ensure these operations remain meaningful,
Prism must ensure that threads inside a perspective remain logically grouped, even when they
encounter for, while, and if statements. As we saw in Section 2.2, making this guarantee requires
Prism to track how data varies across threads.

3.4.1 Thread-Local Data. In Prism, each local variable has a perspective, which indicates the fre-
quency at which its values change in space. This frequency remains constant for the duration of a
program, and it tells Prism that a level[n] variable is always indistinguishable to threads within
that perspective. For example, blk_row @ block[1] on line 19 in Figure 6 has the same value across
all threads in a block.
1Despite the use of the match syntax, all branches of the split execute.

https://manya-bansal.github.io/
https://www.sainati.pl/
https://www.cis.upenn.edu/%7e%6a%77%63/
https://people.csail.mit.edu/%73%61%6D%61%6E/
https://people.csail.mit.edu/%6A%72%6B/
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Programmers specify the perspective that each variable lives at in its declaration. A variable v of
type int is declared at thread[1] perspective using the syntax v : int @ thread[1].2 To enforce
this frequency invariant, Prism restricts reads fromandwrites to variables based on their perspectives.
The rule can be summarized as follows: Prism allows programs to “read up” frombroader perspectives
and “write down” to narrower ones.

1 flag : bool @ thread[1] = ...
2 with group(block[1]):
3 if (flag)
4 __syncthreads();

Fig. 11. Illegal readof thread[1]
variable.

1 x : bool @ thread[1] = ...
2 y : bool @ block[1] = ...
3 with group(block[1]):
4 y = x
5 if(y):
6 __syncthreads();

Fig. 12. Illegal write of
thread[1] variable into a
block[1] variable.

Read Up. Variables can only be read if their perspective is at
least as broad as the current code perspective. Figure 11 gives an
example of an illegal read that would violate this constraint. While
__syncthreads() should always be safe in block[1], branching on
the variable flag—which may take different values across threads
in a block—can cause only some of those threads to reach the
__syncthreads(), violating its collective invariant.

Write Down. Writes are dually constrained. Only values that
live at broader perspectives can be written into variables that live
at narrower ones. For example, a block[1] variable can be used to
write into athread[1] variable, but not vice versa.An example of an
illegal write is shown in Figure 12, where writing from a thread[1]
variable into a block[1] one would cause a deadlock.

Together, the “read up” and “write down” rules ensure that information only flows from broader
perspectives to narrower ones. In Figure 6, we can see the “read up” rule in action on lines 42 and 43.
Meanwhile, lines 19 and 20 are instances of the “write down” rule.

3.4.2 Thread-Shared Data. Unlike thread-local data, which is literally replicated across threads and
is backed by distinct physical storage, thread-shared data consists of pointers into shared and global
memory that are visible to some collection of threads. As a result, the perspective such data inhabits
can evolve as the program executes.
In Prism, there are three mechanisms for obtaining thread-shared data. The first is to directly

allocate data residing in shared memory.3 The second and third are to obtain offsets into existing
data by using the partition or claim operations. These constructs mirror group and split, and
are used to temporarily narrow the perspective associated with a pointer.

Prism simplifies sharedmemory allocations by requiring them to have a static size. The @requires
annotation specifies the amount of shared memory a function expects to have. Prism uses this
information to ensure that a function’s allocations do not exceed its declared limit, and checks
whether there is enough shared memory available at its call sites. The function in Figure 6 declares
the amount of shared memory it will require on 2. We use standard techniques [34] to statically
bound memory usage with Prism’s type system.

Additionally, since sharedmemory is only visible to threadswithin the same block, allocations to it
are only permitted at block[1]. An example of such an allocation is shown on lines 28-30 of Figure 6.
During compilation, Prism will automatically handle the necessary pointer arithmetic to assign each
allocation an appropriate offset within the shared memory space.

Partition. The partition operation plays the same role for memory that group plays for code.
It is used to refine the perspective of a pointer by computing offsets for each narrowed perspective.
Concretely, the partition operation takes a pointer variable x, an indexing function f, and produces

2If not explicitly annotated, Prism infers a variable’s perspective to be the perspective of the code where it was declared.
3Prism assumes that all global memory allocations have been made before launching the CUDA kernel, as is typically the case
with CUDA programs.
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a new variable y at a narrower perspective level[n] to be used inside the partition. After the
partition ends, the threads participating in the partitionmust synchronize to restore the original
pointer x to its perspective.4
Inside the scope of the partition, the original variable x cannot be used, and the pointer can only

be accessed using y. Each use of y applies the indexing function f to compute the true offset of the
access. For example, the use of partition on line 34 in Figure 6 takes a pointer C_smem at block[1],
gives it a new name C_th, and distributes it across thread[1] perspectives by transforming each
occurrence of C_th[i] in the body into C_smem[i*4].

At this point, it is necessary to consider how different indexing functions affect the possibility of
data races. If the indexing function is injective, each narrower perspective receives a distinct offset
into the underlying array, and the resulting partition is free of data races.When the indexing function
is not injective, multiple threads may race on the same location, introducing a potential data race.

Preventing data races is not one of Prism’s goals. In Prism, data races can occurwithin apartition;
however, since the data is eventually synchronized before it is reused, the last writer wins. Out-of-
bounds accesses are considered undefined behavior. Prior work, in particular Descend [35], describes
a type system for restricting data-races and out-of-bounds accesses, andwe believe a similar approach
can be combined with Prism’s. Prism instead focuses on the interaction between the compute and
memory hierarchies and on reasoning about them simultaneously to ensure that operations are
executed only with sufficient compute resources, a guarantee that Descend cannot provide.

Claim. The claim operation lets programmers narrow a pointer’s perspective by giving it to only
one collection of threads with that narrower perspective. For example, line 57 of Figure 6 shows an
example of a claim, where the pointer C_smem @ block[1] is only available to a single warp in the
block and narrowed to Cs_warp @ thread[32] to call a Tensor Core operation.
A claim takes the original pointer x, the target perspective to narrow it to, and a new name y to

assign to the narrowed memory. In all splits within the claim, the new pointer y is accessible only
within one branch; sibling branches are not permitted to read or write from this memory. As with
partition, the original variable x is not accessible within the claim.

3.5 The id() Function
As opposed to exposing users to special hardware variables like blockIdx.x, and threadIdx.x,
Prism provides an id() function instead. The id function returns the relative index of a narrow
perspective within a broader perspective. That is, the interpretation of the id function depends on
both the perspective of the variable it is being written to and the perspective of the code invoking
it. In Figure 6, we use a call to idwith grid[1] perspective on lines 19 and 20 to locate the tile that
each block is in charge of computing. On line 32, however, a write of id into a thread[1] variable at
block[1] perspective will return the relative ID of the thread within the block, not in the grid.

3.6 Collective Operations
There are two types of collective operations in Prism.

FunctionCalls. Each function carries aperspective signature,which consists of its top-level perspective
bound, sharedmemory usage, and its arguments’ perspectives. An example of such a signature can be
seen in lines 3-9 in Figure 6. At call sites, Prism ensures that the callee’s perspective signature can be
satisfied by the caller. Since the perspective bound describes a minimum requirement, functions can
be called with a broader code perspective than necessary, accounting for alignment. When checking

4Strictly speaking, this synchronization is only required at the next point the memory is to be re-used. Prism has a mechanism
for optimizing the placement of these synchronization points, which is describe in Section 5.

https://manya-bansal.github.io/
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Modular GPU Programming with Typed Perspectives 11

function arguments at call sites, Prism distinguishes between primitive data types and pointers. For
primitive data types, like int or bool, arguments can have broader perspectives than specified in the
function signature. On the other hand, pointers that live at broader perspectives can only be passed if
the pointer is marked as const, indicating that it will only be used for reading. Otherwise, we require
that the pointer’s perspective exactly match that of the function’s perspective signature.

Intrinsics. The compiler provides a pre-defined set of collective intrinsics—like the Tensor Core
instruction discussed in Section 2.1—each of which declares its perspective signature. Programmers
may also add to this set using unsafe. Fromwithin unsafe code, programmers can inline assembly
instructions and wrap them in a Prism function, specifying its perspective signature. Prism checks
these call sites like those of any other function.

3.7 Asynchrony
Asynchronous data movement works similarly to other memory operations. Users can mark storage
as asynchronous with the async construct. As with partition and claim, async hides the old
variable and exposes a fresh one that is only accessible within the async statement. Inside, Prism
ensures the new variable is only used by async data-movement intrinsics.

1 with async(old_name) as new_name:
2 match split(thread):
3 case 1:
4 cp_async(smem, new_name, 16);

Fig. 13. Example of an cp.async in-
struction in Prism.

Prism includes two such intrinsics: bulk [16] and non-bulk
[19] asynchronous data-movement instructions. We show an
example of the former in Figure 13. As with the data operations
in Section 3.4, Prism inserts the necessary synchronization
before the program’s next use of the original variable, ensuring
that the asynchronous transfer has completed.

4 Formalization in Bundl
Having introduced the full Prism language, we now describe Bundl, a core calculus that formalizes
its most fundamental aspects by statically tracking perspectives on code and data. We use Bundl to
argue that well-typed Prism programs are not only type-safe, but will also never execute operations
for which they lack the correct perspective.
In this section, we describe Bundl’s type system and operational semantics—in particular how it

manages compute and data perspectives—and build up to a formal proof of type-and-perspective
safety.We instrument Bundl’s operational semantics with runtime perspective enforcement: its rules
will get stuck if they encounter an operation forwhich they have thewrong perspective. This runtime
enforcementmeans that our safety theoremguarantees that dynamically-realized perspectivesmatch
the ones inferred by the type system.

4.1 Bundl Type System
The core idea in Bundl is to track, at the type level, the program’s perspective on code and data. To
achieve this, we borrow techniques from the literature on dependency tracking [1]. In particular, the
code perspective is tracked on the typing judgment, which has the form Γ ⊢𝜋 𝑒 :𝜏 for expressions and
Γ ⊢𝜋 𝑠 for statements. The 𝜋 over the ⊢ is the code perspective on 𝑒 and 𝑠—and is comprised of a level
and a size—the same structure as a perspective in Prism.

The typing context also tracks the perspective at which each variable lives; data can only be read
from or written to a variable when its perspective is compatible with that of the code interacting
with it. This requirement is made manifest in the T-Var rule, found in Figure 14. Observe that the 𝜋
in the variable rule must match exactly between data and code; principles like “read up” and “write
down” are instead encoded directly in the rules for reading and writing, like T-Arr-Access, which
views the array being read with broader perspective than the current code perspective.

Figure 14 also shows other key rules, which fall into two main categories: those for managing
perspectives on code and those for perspectives on data.
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Γ ⊢𝜋 𝑒 :𝜏 (Expression typing)

𝑥 :𝜋 𝜏 ∈ Γ
Γ ⊢𝜋 𝑥 :𝜏 T-Var

Γ ⊢𝜋 ′ 𝑒1 :𝜏 []𝑙 Γ ⊢𝜋 𝑒2 :int 𝜋 ≤𝜋 ′
Γ ⊢𝜋 𝑒1 [𝑒2] :𝜏

T-Arr-Access

Γ ⊢𝜋 𝑠 (Statement typing)

Γ ⊢(h,𝑛1 ) 𝑠1 Γ ⊢(h,𝑛2 ) 𝑠2 𝑛1,𝑛2 align to 𝑛

Γ ⊢(h,𝑛) split(𝑛1,𝑛2){𝑠1}{𝑠2}
T-Split

where 𝑛1,𝑛2 align to 𝑛 ::= (𝑛1+𝑛2≤𝑛) and (𝑛1 |𝑛) and (𝑛2 |𝑛) and (𝑛2 |𝑛1+𝑛)

Γ ⊢𝜋 𝑠
Γ ⊢𝑞 ·𝜋 group 𝑞 𝑠 T-Group

Γ,𝑦 :↓𝜋 𝜏 []𝑙 ⊢𝜋 𝑠 𝑙 ≠Local

Γ,𝑥 :𝜋 𝜏 []𝑙 ⊢𝜋 lower 𝑥 into 𝑦 in 𝑠
T-Lower

Γ,𝑦 :(h,𝑛/𝑐 ) 𝜏 []𝑙 ⊢(h,𝑛) 𝑠 𝑐 |𝑛 𝑙 ≠Local

Γ,𝑥 :(h,𝑛) 𝜏 []𝑙 ⊢(h,𝑛) partition 𝑥 into 𝑦 by 𝑐 in 𝑠
T-Partition Γ ⊢↓𝜋 𝑠

Γ ⊢𝜋 destruct in 𝑠
T-Destruct

Γ,𝑦 :(h,𝑛′ ) 𝜏 []𝑙 ⊢(h,𝑛′ ) 𝑠 𝑛′≤𝑛 𝑙 ≠Local

Γ,𝑥 :(h,𝑛) 𝜏 []𝑙 ⊢(h,𝑛) claim 𝑥 into 𝑦 at 𝑛′ in 𝑠
T-Claim

Fig. 14. Core typing rules of Bundl. The typing rules presented here are a simplified selection of the full rules,
which can be found in Appendix A.2.

4.1.1 Managing Perspectives on Code. Bundl’s group statement directly corresponds to Prism’s,
and is checked by the T-Group rule. Given some statement 𝑠 that checks with perspective 𝜋 , the
statement group 𝑞 𝑠 will check with 𝑞 ·𝜋 , enforcing Prism’s divisibility requirement.
The split statement, meanwhile, is checked by the T-Split rule, and functions like a binary

version of the n-ary split construct in Prism. It enforces the same divisibility requirements to
ensure that the perspectives on code and data remain properly aligned, and then checks the two
sub-statements 𝑠1 and 𝑠2 with the divided, narrower perspectives.
In Bundl, to better model the details of how perspectives shift down the GPU hierarchy, we

introduce a third construct called destruct that makes explicit exactly where such shifts occur. In
the corresponding rule, T-Destruct, the ↓ operation on 𝜋s “destructs” the perspective into many
narrower perspectives at a lower level. This operation is defined as ↓ (Grid,1) = (Block,𝐵) and
↓ (Block,1) = (Thread,𝑇 ), where 𝐵 and𝑇 are parameters to a particular instantiation of Bundl to
describe the number of blocks per grid and threads per block.5

4.1.2 Managing Perspectives on Data. The mechanism for managing data perspective mirrors that
of code perspective, with each operation for data corresponding to an operation for code.
The partition operation is analogous to grouping a code perspective. The typing rule for this

operation, T-Partition, requires that the data perspective on 𝑥 , the variable to be partitioned, is the
same as the current perspective on code. After partitioning, a fresh variable𝑦 is introduced with a
new perspective 𝜋/𝑐 . Within the partition, we disallow references to 𝑥 and continue checking the
body with the original 𝜋 ; the partition has no effect on the code perspective.
Unlike partition, which divides up a piece of data equally among narrower perspectives, the

claim operation views the claimed data with exactly one narrower perspective. Accordingly, Bundl
needs to ensure that only one branch of a split operation, with the appropriate 𝜋 , can refer to
the claimed variable. To ensure that this is the case, the T-Claim rule links the data perspective of
the variable to the compute perspective of the code claiming it by changing both at the same time.

5Bundl is abstracted over these 𝐵 and𝑇 values, so instead of tracking perspective bounds the way that Prism does, it only
tracks the top-level perspective described in Section 3.2.
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𝐿,𝑆,Σ,𝑃{𝐿′,𝑆 ′,Σ′,𝑃 ′ (Machine judgment)

𝐿(𝑡),𝑆 (𝑏),Σ,𝑡,𝑏,0⊢(Grid,1) 𝑠{𝑠′ ⊣𝜂′,𝜎 ′,Σ′ 𝑃 (𝑡,𝑏)=𝑠
𝐿,𝑆,Σ,𝑃{𝐿[𝑡 ↦→𝜂′],𝑆 [𝑏 ↦→𝜎 ′],Σ′,𝑃 [(𝑡,𝑏) ↦→𝑠′] S-Program

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋 𝑠{𝑠′ ⊣𝜂′,𝜎 ′,Σ′ (Thread judgment)

𝑝 <𝑛1 𝑛1,𝑛2 align to 𝑛 𝜂,𝜎,Σ,𝑡,𝑏,𝑝,⊢(h,𝑛1 ) 𝑠1{𝑠′1 ⊣𝜂′,𝜎 ′,Σ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢(h,𝑛) split(𝑛1,𝑛2){𝑠1}{𝑠2}{split(𝑛1,𝑛2){𝑠′1}{𝑠2} ⊣𝜂′,𝜎 ′,Σ′
S-Split-Left

𝑝≥𝑛1 𝑝 <𝑛1+𝑛2 𝑛1,𝑛2 align to 𝑛 𝜂,𝜎,Σ,𝑡,𝑏,𝑝−𝑛1,⊢(h,𝑛2 ) 𝑠2{𝑠′2 ⊣𝜂′,𝜎 ′,Σ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢(h,𝑛) split(𝑛1,𝑛2){𝑠1}{𝑠2}{split(𝑛1,𝑛2){𝑠1}{𝑠′2} ⊣𝜂′,𝜎 ′,Σ′
S-Split-Right

𝜂,𝜎,Σ,𝑡,𝑏,𝑝mod 𝑛 ⊢(h,𝑛) 𝑠{𝑠′ ⊣𝜂′,𝜎 ′,Σ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢(h,𝑞 ·𝑛) group 𝑞 𝑠{group 𝑞 𝑠′;⊣𝜂′,𝜎 ′,Σ′
S-Group

𝜂,𝜎,Σ,𝑡,𝑏,𝑡 mod𝑇 ⊢(Thread,𝑇 ) 𝑠{𝑠′ ⊣𝜂′,𝜎 ′,Σ′

𝜂,𝜎,Σ,𝑡,𝑏,0⊢(Block,1) destruct in 𝑠{destruct in 𝑠′ ⊣𝜂′,𝜎 ′,Σ′
S-Destruct-Block

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢(Block,1) 𝑥 :=alloc Shared 𝜏 𝑛 in 𝑠{𝑠 ⊣𝜂,𝜎 [𝑥 ↦→𝜋 ⟨𝑥,𝑛⟩],Σ
S-Alloc-Shared

Fig. 15. Core semantic rules of Bundl. As with the typing rules, we present only a simplified selection of the full
rules, which can be found in Appendix A.3.

This represents a minor difference from Prism, which uses additional static analysis to ensure that a
claimed variable is only accessed in a single split branch.
Lastly, the T-Lower rule mirrors the T-Destruct rule; it uses the ↓ operator to move a variable

from one level of the hierarchy to another, distributing it equally among all the narrower perspectives
at that level in the same manner as T-Partition.
Note that these rules only apply to thread-shared memory, i.e., arrays that do not live in Local.

The provenance of an array type is denoted by the superscript 𝑙 above it.

4.2 Bundl Semantics
Having explained the key rules of the type system, we can move on to discuss Bundl’s operational
semantics. To reflect the fact that a GPU program executes in parallel across numerous threads, we
model the semantics of Bundl in the style of Turon et al. [57], using a two-level small step judgment.
We present the key rules of this semantics in Figure 15.

The top level (i.e.,machine-level) judgment has just one rule: S-Program.This rule acts as a “frame”
for the lower level (i.e., thread-level) judgment, and steps a collection of thread-ID-indexed local
memories (𝐿), a collection of block-ID-indexed shared memories (𝑆), a global memory (Σ), and a
thread pool (𝑃 ) to an updated collection of memories and updated thread pool. The thread pool maps
thread and block IDs to code, intuitively representing the program being executed by each thread at
the current moment. The S-Program rule non-deterministically chooses a thread ID and block ID
and steps it according to the thread-level judgment. This allows the semantics to model the full range
of non-deterministic behavior arising from the GPU’s thread scheduler.6

6In reality, the GPU’s warp scheduler issues instructions to threads in a warp in lockstep, but modeling every thread as
completely independent is both simpler and a conservative overestimate of the nondeterministic behavior of the GPU.
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The thread-level judgment has the shape 𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋 𝑠{𝑠′ ⊣𝜂′,𝜎 ′,Σ′, where
• 𝜂 denotes thread-local memory,
• 𝜎 denotes shared memory,
• Σ denotes global memory,
• 𝑡 denotes the thread’s ID,
• 𝑏 denotes the ID of the block in which the thread lives, and
• 𝑝 denotes the relative position of the thread within 𝜋 (the perspective ID).

Critically, notice that a 𝜋 also appears on the thread-level judgment just as it does on the typing
judgment. This is because the thread semantics dynamically tracks and enforces perspectives. The same
way evaluation of a program“gets stuck” if a value does not have the right type, the semantics of Bundl
also get stuck if code attempts to access data or invoke commands with the wrong perspective. As an
example, observe the S-Alloc-Shared rule in Figure 15, which requires a (Block,1) perspective and
will fail to step if encountered with a different one. This runtime perspective is present in Bundl, but
is erased by Prism during compilation; in Section 4.3 we use it to prove that well-typed programs will
always execute with the same perspective that the type system viewed themwith.

The semantic rules for perspectives involvemanipulating𝑝 to trackwhich threads takewhich code
pathswhen perspectives are split or grouped. Notice that in S-Program, the thread-level judgment
always begins with perspective (Grid,1): all the perspective management rules are congruences,
narrowing the perspective of further evaluation as determined by the particular rule used.
These rules take great care to ensure that 𝑝 always describes the relative position of a compute

resourcewithin its perspective; the payoff is that Bundl’s semantics can later use this𝑝 value tomodel
the way that Prism automatically adjusts indices into data when partitioning a data perspective.
Beyond these key rules for managing perspective on code, we have modeled all other core features of
Prism, suchasasynchronousoperationsand threadsynchronization, inBundl.Tohandle such features
we equip the operational semantics with additional structure, including sets of semaphores [25] for
synchronization and a stack of effect handlers for modeling deferred asynchronous computations
inspired by Ahman and Pretnar [3]. We have elided these details here for simplicity, but interested
readers can find them in their full complexity in Appendix A.3.

4.3 Soundness Theorem
Together, the type system and operational semantics allow us to prove the following syntactic
soundness theorem, which says that Bundl programs are type safe and do not get stuck trying to
execute operations for which they lack the required perspective:

Theorem 4.1. (Type-and-Perspective Safety). For any program 𝑠 such that Γ ⊢𝜋 𝑠 , either:
(1) 𝑠 is skip, or
(2) for any well-typed environments 𝜂, 𝜎 , and Σ, there is an 𝑠′, 𝜂′, 𝜎 ′, and Σ′ such that

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋 𝑠{★𝑠′ ⊣𝜂′,𝜎 ′,Σ′ and Γ′ ⊢𝜋 𝑠′, where Γ′ is an extension of Γ, and 𝜂′, 𝜎 ′, and Σ′ are
well-typed with respect to Γ′.

Proof. Via the usual progress and preservation lemmas, available in Appendix A.4. □

It isworth noting that this soundness theoremguarantees a syntactic safety property, not a liveness
property: it does not guarantee that all threads sharing perspective 𝜋 that can reach a program point
typed with 𝜋 will eventually do so. Indeed, in the presence of nontermination, liveness does not
hold—some of the threads could split off and loop forever. While we believe the liveness version of
this theorem holds for a terminating fragment of Bundl, it is not provable with syntactic methods; the
proof would require semantic techniques that are notoriously challenging and would be a research
contribution [5, 28, 57] in and of itself. We plan to tackle this proof for Bundl in future work.
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5 Implementation
Prism is implemented as an embedded language in Python. Once a program type checks, Prism
lowers it to a CUDA file. All perspective information is erased during this step, and the generated
CUDA contains no run-time checks. The file can then be compiled by nvcc [40], NVIDIA’s closed-
source compiler, to produce an executable. Because Prism operates at roughly the same level of
abstraction as CUDA, there is a one-to-one mapping between most language constructs and their
CUDA counterparts. A notable change is the addition of three parameters to each device function:
the thread’s relative ID, the block’s ID, and an offset for shared memory allocations.

P1

P2

P3

P4

Read
Write

Sync 
Point

Sync 
Point

Fig. 16. An example
data-control-flow
graphwith synchro-
nization points.

Inserting Synchronization. Most of Prism’s implementation is straightforward,
but inserting synchronizationpoints ismore involved.Asdescribed inSection3.4,
once data has been partitioned, Prism is responsible for synchronizing the
data after the partition ends.

To determinewhere this synchronizationmust occur, Prism constructs a data-
control-flow graph from the program. Nodes correspond to partitions, and
edges capture program-order precedence: a parent partitionmust complete
before its child begins. The graph can have backedges introduced through loops.
In this graph, each partition is categorized as a read or a write partition by
checking whether the partitioned variable ever appears as an lvalue. Synchro-
nization points are inserted according to the following scheme:

(1) If the parent partition is a write, a synchronization point is inserted
before the current one to ensure that it observes the most recent data; or

(2) If the current partition is a write, a synchronization point is inserted
before it to ensure that all preceding reads have completed.

Figure 16 shows an example graph with synchronization points derived from
these two conditions. The inferred synchronization points in Figure 6 have also
been marked on lines 40, 48, 56, and 63.

Using this information, Prism emitswait operations before partitions begin
and arrive operations after they end, using CUDA’s general split-barrier [20]
primitive to implement them. For special cases, such as synchronizing an entire
block or warp, Prism instead uses primitives like __syncthreads() or __syncwarp().
Synchronization for asynchronous data movement is handled in exactly the same way and uses

the same underlying graph. CUDA allows asynchronous loads to be associated with a split barrier, so
Prism binds each asynchronous transfer to the appropriate wait–arrive pair inferred from the graph.
Certain features, such as commit group-style synchronization [17, 18], require additional reasoning,
and Prism performs further static analysis to insert the necessary synchronization.

It is worth noting that naively inserting synchronization immediately after each partitionwould
be correct but prohibitively slow. To avoid this, Prism applies two optimizations: a wait-motion pass
pushes waits downward toward the first use of the partitioned variable, and an arrive-motion pass
pulls arrives upward toward its last use.

6 Evaluation
Having explained the design of Prism, we now evaluate it in the context of three main questions:

RQ1 Can Prism express a variety of composable CUDA programs?
RQ2 Can Prism express programs that use advanced GPU features?
RQ3 Can Prismmatch the performance of existing, speed-of-light CUDA code?
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To perform this evaluation, we use two GPUs. The first is the NVIDIA H100 SXM5, a server-grade
chip that supports TensorCore operations and a dedicated hardware copy engine, the TensorMemory
Accelerator (TMA) [16].Notably, theH100 introduces anew logical level called thewarpgroup, andwe
show that our programmingmodel can accommodate it. Moreover, because the H100 has historically
served as the primary GPU for large-scale AI training, many CUDA kernels are already highly
optimized for this hardware and achieve near speed-of-light performance, providing a rigorous
baseline for comparison. To ensure our results generalize beyond the H100, we also test programs on
a second GPU, the NVIDIA 4070 SuperTi—a consumer-grade chip.

Asmentioned in Section 5,when Prism typechecks a program, it produces a CUDAfile.We compile
the CUDA file with nvcc version 12.3 [40] with flags -03 –use_fast_math. We initialize all inputs
using a random number generator [31] and report the average runtime sampled over 10 iterations,
following awarm-up phase of 5 iterations. All aggregate results reported in this section are geometric
means. All programs in the evaluation have been reproduced in Appendix B.

6.1 RQ1: Can Prism Express a Variety of CUDA Programs?
We evaluate Prism’s expressivity by writing programs that have fundamentally different patterns of
convergence, along with a library modeled after CUB [38] that contains composable pieces.

6.1.1 Programs with Different Convergence Behavior.

Matrix Multiplication (4070Ti). We chose matrix multiplication as our first benchmark for two
main reasons. First, there exist several implementations that achieve near-peak performance, provid-
ing a strong baseline. Second, it allows for a range of increasingly sophisticated implementations
that exercise different parts of the language, making it ideal for evaluating expressiveness.
We adapt the codebase from Boehm [6] to implement floatmatrix multiplication, commonly

referred to as sgemm. Concretely, we compute𝐶←𝛼𝐴𝐵+𝛽𝐶 where𝐴, 𝐵 and𝐶 arematrices and𝛼 and
𝛽 are scalars. As this is a float benchmark, it does not need advanced GPU features like asynchrony
or Tensor Cores to achieve speed-of-light performance. We will discuss these in Section 6.2.

We implement five variants of the sgemm benchmark: (1) a naive version that follows the traditional
single-programmultiple-data pattern, written from the perspective of a thread; (2) a version that
exploits memory coalescing [10], still expressed at the thread level; (3) a version that builds on
(2) by introducing 2D tiling and staging data in shared memory, which requires shifting first to
the perspective of a block and then to the perspective of a thread, while also requiring block-level
synchronization; (4) a version that applies 2D tiling with vectorized loads, again written from the
perspective of a block; and (5) a version that combines the optimizations from (2) through (4) while
adding an additional level of tiling from the perspective of a warp.

Wecanexpressall variants cleanly, and theresultingprogramsareclose to theirCUDAcounterparts,
which distinguish perspectives through disciplined style. Prism, on the other hand, enforces this
discipline at compile time. We evaluate the performance of these variants in Section 6.3.

Single-Pass Parallel Prefix Scanwith Decoupled Look-Back (4070Ti). We also implement scan,
a widely used parallel primitive, in Prism.We focus on the prefix-sum scan, which computes, for each
position in an array, the sum of all elements up to that position. Prefix sum sits in a different corner of
the GPU design space frommatrix multiplication: it is memory intensive, requires careful attention
to the convergence behavior of threads, and traditionally requires multiple passes over data.

We implement the single-pass parallel prefix scanwith decoupled look-back, introduced byMerrill
and Garland [36], an elegant algorithm that does not require multiple passes over the input data,
and involves several distinct points of convergence. Within each block, work is decomposed into
fine-grained thread-level and warp-level scans. After producing the local result, blocks publish their
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partial prefix to global memory. Finally, each block waits until enough information from earlier
blocks is available, at which point it accumulates the value and completes its section of the scan.

We implement this full strategy in Prism. Our implementation uses unsafe to implement a global-
memory spinlock that lets a block check when the previous block’s data is ready.

6.1.2 Case Study: Can Prism help build composable functions?

While answering the other RQs, we found ourselves developing a small library of functions—similar
in spirit to CUB—that we would frequently call. In this section, we qualitatively study how Prism can
help programmers design libraries that they can compose with confidence.

1 template<typename T, int BlockDimX,
2 int ItemsPerThread, BlockLoadAlgorithm Algorithm,
3 int BlockDimY = 1, int BlockDimZ = 1>
4 class BlockLoad:
5
6 // --- Calling the load function by instantiating the class ---
7
8 using BlockLoad = cub::BlockLoad<int, 128, 4, BLOCK_LOAD_DIRECT>;
9 // Allocate shared memory for BlockLoad
10 __shared__ typename BlockLoad::TempStorage temp_storage;
11 int thread_data[4]; // Thread local data
12 BlockLoad(temp_storage).Load(d_data, thread_data);

Fig. 17. Using BlockLoad in CUB.

As mentioned in Section 1, CUB occu-
pies a unique design space in the GPU
library ecosystem. Unlike many other li-
braries such as cuBLAS [12], cuDNN [14],
and cuSPARSE [15], which provide host-
side functions, CUB provides a device-side
library organized into different levels. It
makes these levels apparent by prefixing
each of its functions with Device, Block,
and Thread. The prefix sum already used variants of these functions, translated into Prism.

Let’s turn our attention to a particular CUB function—BlockLoad—and examine how it is equiva-
lently expressed in Prism; we will see how Prism’s type system reifies CUB’s implicit assumptions.
In CUB, the load function is implemented as a class, as shown in Figure 17.

CUB exposes a leaky abstraction, where information about the number of threads, block sizes, and
other details seeps through:

(1) The CUB documentation needs to specify the number of threads that the function can assume
to be available, because within the function, each threadmust locate itself in the computation
and use its threadIdx.x accordingly.

(2) The “item per thread” design can serve two purposes. The first is performance: if loops have
constant bounds, they can be unrolled. The second is correctness: the function relies on the
assumption that all threads call the function with an equal number of values to load.

(3) The CUB documentation specifies that thread_data can be data local to each thread.
(4) Finally, it says that if shared memory is being overwritten, a __syncthreads() call must be

made to ensure that all reads have completed.
1 @prism("device")
2 @requires(block[1], thread[32])
3 def block_load(input : ptr(const(int)) @ block[1],
4 output : ptr(int) @ thread[1],
5 items_per_thread : int @ block[1]):

Fig. 18. block_load signature in Prism.

In Prism, however, we are able to describe these require-
ments through the interface shown in Figure 18, reducing
the need to communicate numerous implementation de-
tails through documentation:

(1) We do not need to pass in the number of threads at all. Whenever Prism calls a function, it
track the relative thread ID, so each function can be written locally as if it were running alone,
rather than having to determine where the thread resides on the grid.

(2) We do not need tomake item_per_thread a template argument for correctness. Its frequency
is set at the function signature, so Prism will never allow a function to be called with a value
living at a narrower perspective.

(3) In our interface, thread_data is explicitly set to a thread-local value. Since it is not marked
as const, Prism conservatively assumes it may be written to, and enforces at compile time
that only thread[1] values are passed in.
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(4) Finally, using our synchronization pass outlined in Section 5, a __syncthreads() call will
be inserted automatically if input is going to be used for writing.

1 @prism("device")
2 @requires(thread[32])
3 # block_load calls into warp_load
4 def warp_load(input : ptr(const(int)) @ thread[32],
5 output : ptr(int) @ thread[1],
6 items_per_thread : int @ thread[32]):

Fig. 19. warp_load signature in Prism.

1 @prism("device")
2 @requires(thread[1])
3 # warp_load calls into thread_load
4 def thread_load(input : ptr(const(int)) @ thread[1],
5 output : ptr(int) @ thread[1],
6 items_per_thread : int @ thread[1]):

Fig. 20. thread_load signature in Prism.

Moreover, our version of CUB’s function is built as a
compositionof twoother functions,whose interfacesare
shown in Figures 19 and 20. The block_load function
is implemented by a call to warp_load, which in turn
callsthread_load. Hadwemistakenly attempted to call
warp_load from inside thread_load, however, Prism
would reject this, rather than silently failing at runtime.

6.2 RQ2: Can Prism Express
Programs that Use Advanced GPU Features?
To answer this question, we write a matrix multiplication for the bf16 datatype on the H100, also
known as hgemm. This benchmark is an acid test of our language, as hgemm pushes several language
features to the extreme. Towrite an hgemm that can hit peak throughput on anH100, we need to write
a warp-specialized kernel that uses the TMA—an asynchronous hardware copy engine that canmove
tiles of data at a time—and the warpgroup–level Tensor Core instructions, or wgmma [9]—new to the
Hopper architecture. Ahigh-performance kernel for thismatrix-multiplication overlaps computation
with data movement by pipelining loads.

The implementation in Prism looks different from CUDA code, particularly in how pipelining is
expressed. Since Prism uses named variables introduced by partitions or claims to determine the
synchronization each region requires, when pipelining, we cannot dynamically change the pipeline
slot simply by maintaining an index that wraps around based on the pipeline’s length. Instead, each
pipeline slots must be given separate names so that Prism can track them independently and overlap
computewith data-movement. This leads to pipeline slots thatmust be individually named and forces
the load logic to be effectively “unrolled”. This, in turn, forces all pipelines in Prism to be statically
sized. In practice, these pipelines are statically sized anyway to ensure they fit in shared memory.

Notably, for this benchmark, in addition to wgmma andTMA, the programneeds to dynamically real-
locate registers betweenproducer andconsumerwarpgroups, an instructiononly available onHopper.
This redistribution is a warpgroup-level collective operation, and Prism can check it like any other.
Moreover, getting wgmma to work did not require introducing a new perspective into the language;
thread[128]was sufficient.We did, however, need to add a dedicated TMA-style asynchronous data-
movement construct, since Prismmust eventually insert the appropriate synchronization for these
transfers.
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6.3 RQ3: Can PrismMatch the Performance
of Existing, Speed-of-Light CUDACode?
In Section 6.1 and Section 6.2, we examined programs
that expressed the same computation in multiple
ways, relied on multiple points of convergence, and
used advanced GPU features. We now discuss their
performance.
The performance of the matrix multiplication

benchmarks is shown in Figure 21, where we demon-
strate that Prism is competitive with cuBLAS [12].
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For the prefix scan, we compare our performance
toCUB in Figure 22,which shows that Prism iswithin
7% of CUB’s achieved bandwidth for arrays that do
not fit in the L2 cache.

Finally, we evaluate our H100 implementation and
show (in Figure 23) that it is competitivewith cuBLAS
on square sizes, coming within 15%. This perfor-
mance difference arises due to one of nvcc’s opti-
mization passes failing to trigger: the dynamic reg-
ister allocation instruction is merely a hint—not a
directive—to nvcc, and its optimization pass is sen-
sitive to the way that pipeline structure is expressed.
Weemphasize that this is anexactingbenchmark, and
coming close to cuBLAS’s performancedemonstrates
Prism’s ability to control low-level features.

7 RelatedWork
Prism builds on a rich tradition of systems languages
forGPUprogramming and theoretical foundations of
parallel programming. Prism differs from these sys-
tems in a crucial way: it treats collective operations,
and therefore composability, as first-class concerns.

Imperative Languages for GPUs. CUDA [39], ROCm [2], and OpenCL [53] are imperative
programming languages that expose low-level access to GPU hardware. These languages offer no
support for managing collective operations, statically or otherwise; instead, users must orchestrate
computation on the machine by describing how individual threads execute code. The subtle failures
permitted by this model are the motivation for Prism.

Descend [35], a newRust-inspired [50] language, uses a type system to track aspects of the compute
and memory hierarchy and is thus the closest to our work. However, Descend’s main concern is
preventing data races, as opposed to ensuring that collective operations execute in valid contexts. As
a result, Descend lacks support for many collective operations like Tensor Cores; in fact, because
Descend allows threads to read their own IDs and thus induce data-dependent control flow, adding
such support is not possible with its current design. It is also worth noting that while Descend does
formalize a type system, it does not attempt to prove any properties about it.

Functional Languages for GPUs. Futhark [33], Accelerate [7] and Vertigo [27] are functional
array languages with compilers targeting CUDA. These languages expose a high level interface,
abstracting away details of the hardware entirely in exchange for stronger safety guarantees. Prism,
however, exposes low-level details of the hardware and thus does not trade performance for safety.

Tile-Based Kernel DSLs. More recently, tile-based GPU languages—Triton [55], Pallas [52],
Tilus [26], and Helion [44]—offer a middle ground between high-level abstraction and low-level
control. However, these languages sidestep the question of composability entirely because they
restrict programmers to a single layer of the hierarchy: a block (Triton, Tilus, Helion), or awarpgroup
(Pallas). Gluon [56], meanwhile, is a new low-level, tile-based language, but it does not check and
cannot enforce that collective operations are executed at the correct layer of the hierarchy.

Task-Based and Scheduling Languages. Languages like Cypress [58], Halide [45], Fireiron [29]
and RISE/ELEVATE [30] expose a scheduling language that lets users modify an existing reference
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program through external commands. Because these languages operate by transforming a fixed
source of truth, they expose a fundamentally different programming model than Prism.

Libraries Built on CUDA. Many GPU libraries, such as CUTLASS [51], CUB [38], and Thun-
derKittens [47], expose device functions that operate at various levels of the compute hierarchy.
These functions are typically organized via C++ namespaces to reflect their intended usage (e.g.,
warp-level, block-level). However, this organization is purely conventional: it encodes hierarchy
through naming rather than enforcing it statically. As a result, correct use requires careful discipline
from both the library implementer (to uphold naming and usage invariants) and the user (to correctly
interpret them). Any mismatch or subtle misunderstanding between the intended and actual use of
these functions goes unchecked by the compiler.

TheoreticalFoundations. ThedesignofBundl isheavily inspiredbyexistingworkondependency
tracking [1]. Dependency tracking calculi allow type systems to track how data and code depend on
each other, and have commonly been used to implement secure information flow analyses [24]. In
Bundl, data that lives at a narrowperspective is unable to flow into data living at a broader perspective,
and we use dependency tracking to capture this restriction in Bundl’s type system.
Prior theoretical work has tackled reasoning about thread divergence. In particular, Muller and

Hoffmann [37] build a sophisticated quantitative program logic for this use case. Singhania [46],
meanwhile, uses static analysis techniques to predict thread divergence to unlock optimizations.

8 Conclusion, Limitations, and FutureWork
We have presented Prism, a new, low-level GPU language that statically guarantees safe usage of
compute resources by construction, without sacrificing low-level control. Prism introduces a new
mental model for writing GPU code, which we are excited to make more expressive and ergonomic.
Particularly, we plan to improve the experience of writing pipelines in Prism. As discussed in

Section 6.2, Prism currently requires pipeline slots to be explicitly named; we can make this more
ergonomic this by adding language support for generating pipeline-style code.

Prism can be extended tomore architectures; in particular, it can accommodate newer GPUs—such
as Blackwell—that support coarser-grained Tensor Core operations. More broadly, we hope to
generalize Prism’s model to other hierarchical compute environments, including distributed systems.
We also believe that Prism is capable of guaranteeing data-race freedom, but additional work is

required to support this both formally and in practice. In particular, we think that if Prism restricted
users to partitions with injective indexing functions, data-race freedomwould follow naturally.
We are also interested in exploring how the design principles of Descend [35], which build on Rust’s
ownership model [50], could be applied to Prism.

On the theoretical side, we plan to explore a terminating fragment of Bundl and prove the liveness
property discussed in Section 4.3: that all threads sharing perspective 𝜋 eventually reach the parts
of a program viewed at that 𝜋 . This amounts to showing that threads sharing the same perspective
execute the same code and observe the same data, which we hope to prove using logical relations
following Turon et al. [57] and Spies et al. [48, 49].
We believe that Prism is a promising low-level substrate that enables confident composition and

can serve as a foundation for building higher-level libraries and abstractions.
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A Complete Bundl Type System, Semantics, and Syntactic Soundness Proofs
A.1 Basic Definitions

Hierarchy Levels h ::=Grid |Block |Thread
Memory Kinds 𝑙 ::=Local |Shared |Global
Perspectives 𝜋 :h×N
Base Types 𝑏 ::=bool |int |float

Types 𝜏 ::=𝑏 |𝑏 []𝑙 |Fun(Γ,𝜋,𝑚) |async 𝜏
Contexts Γ ::= · |Γ,𝑥 :𝜋 𝜏

Shared Memory Remaining𝑚 :N

Perspectives 𝜋 are part of an algebra parameterized over some constant values𝑇 (the number of
threadsperblock) and𝐵 (thenumberofblockspergrid).With thesevalues,wehave two isomorphisms:

(Block,1) � (Thread,𝑇 )

and
(Grid,1) � (Block,𝐵)

The group and split operations of Prism allows us to move along this isomorphism, from left
to right. For clarity, in Bundl we split these operations into three: a split operation that can split
perspectives into multiple narrower ones, and a destruct operation that directly moves us along
the isomorphism, and a group that divides our current perspective into equal sized parts.
Perspectives 𝜋 are also lexicographically ordered in the obvious way. hs are ordered such that

Thread≤Block≤Grid, and (h1,𝑛1) ≤ (h2,𝑛2) iff 𝑛1 |𝑛2 and h1≤h2.
We define scalar multiplication 𝑖×ℎ of natural numbers with hs: 𝑖×(ℎ,𝑛)= (ℎ,𝑖𝑛).
We also define division of perspectives and hierarchy levels of type 𝜋×𝜋→N. Grid/Block=𝐵

and Block/Thread=𝑇 . We lift this to perspectives like so: (ℎ1,𝑛1)/(ℎ2,𝑛2)= ((ℎ1/ℎ2) ·𝑛1)/𝑛2.
Lastly we define a partial ↓ operator on hs such that ↓Block=Thread and ↓Grid=Block. Note

that ↓Thread is undefined. This operator lifts to 𝜋s whose second component is 1 and encodes the
leftward component of the isomorphism above: ↓ (Block,1)= (Thread,𝑇 ) and ↓ (Grid,1)= (Block,𝐵).
Note also that the presentation of these rules in the main body of the paper elide the𝑚 portion,

which tracks the maximum amount of memory a given computation is allowed to use. In the full
system presented here, both the typing rules and the operational semantics carry an additional piece
of information tracking allocated memory.

A.2 Complete Bundl Typing Rules
A.2.1 Expressions.

𝑥 :𝜋 𝜏 ∈ Γ
Γ ⊢𝜋 𝑥 :𝜏 T-Var

Γ ⊢𝜋 𝑛 :int T-Int
Γ ⊢𝜋 𝑓 :float T-Float

Γ ⊢𝜋 𝑏 :bool T-Bool
𝜋 < (Grid,1)

Γ ⊢𝜋 partition_id :int T-Partition-Id

Γ ⊢𝜋 ′ 𝑒1 :𝜏 []𝑙 Γ ⊢𝜋 𝑒2 :int 𝑙 =Global or 𝑙 =Local 𝜋 ≤𝜋 ′
Γ ⊢𝜋 𝑒1 [𝑒2] :𝜏

T-Arr-Access
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Γ ⊢𝜋 ′ 𝑒1 :𝜏 []Shared Γ ⊢𝜋 𝑒2 :int 𝜋 ≤ (Block,1) 𝜋 ≤𝜋 ′
Γ ⊢𝜋 𝑒1 [𝑒2] :𝜏

T-Arr-Access-Shared

Γ ⊢𝜋 𝑒1 :int Γ ⊢𝜋 𝑒2 :int
Γ ⊢𝜋 𝑒1 bop 𝑒2 :int

T-Bop
Γ ⊢𝜋 𝑒1 :int Γ ⊢𝜋 𝑒2 :int
Γ ⊢𝜋 𝑒1 cmp 𝑒2 :bool

T-Cmp

A.2.2 Statements.
𝑓 :𝜋 Fun(𝑥𝑖 :𝜏𝑖 ,𝜋,𝑚′) ∈ Γ Γ ⊢𝜋 𝑒𝑖 :𝜏𝑖 𝑚′≤𝑚

Γ ⊢𝜋𝑚 𝑓 (𝑒1,...,𝑒𝑛)
T-Function-Call

Γ ⊢(h,𝑛1 )𝑚 𝑠1 Γ ⊢(h,𝑛2 )𝑚 𝑠2 𝑛1,𝑛2 align to 𝑛

Γ ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){𝑠1}{𝑠2}
T-Split Γ ⊢↓𝜋𝑚 𝑠

Γ ⊢𝜋𝑚 destruct in 𝑠
T-Destruct

Γ ⊢(h,𝑛)𝑚 𝑠

Γ ⊢(h,𝑞 ·𝑛)𝑚 group 𝑞 𝑠
T-Group 𝑥 :𝜋 ′ 𝜏 ∈ Γ Γ ⊢𝜋 𝑒 :𝜏 𝜋 ′≤𝜋

Γ ⊢𝜋𝑚 𝑥 =𝑒
T-Assn

Γ ⊢𝜋𝑚 init𝜓
T-Sync-Init

Γ ⊢𝜋𝑚 dec𝜓
T-Sync-Dec

Γ ⊢𝜋𝑚 wait𝜓
T-Sync-Wait

Γ ⊢𝜋𝑚 skip
T-Skip 𝑛≤𝑚

Γ ⊢𝜋𝑚 free 𝑛
T-Free

Γ ⊢𝜋 𝑒 :𝜏 Γ,𝑥 :𝜋 ′ 𝜏 ⊢𝜋𝑚 𝑠 𝜋 ′≤𝜋 𝜏 not an array type
Γ ⊢𝜋𝑚 𝑥 :𝜏 @ 𝜋 ′=𝑒 in 𝑠

T-Decl

Γ ⊢𝜋 ′ 𝑒1 :𝜏 []𝑙 Γ ⊢𝜋 𝑒2 :int Γ ⊢𝜋 𝑒3 :𝜏 𝑙 =Global or 𝑙 =Local 𝜋 ′≤𝜋
Γ ⊢𝜋𝑚 𝑒1 [𝑒2]=𝑒3

T-Arr-Assn

Γ ⊢𝜋 ′ 𝑒1 :𝜏 []Shared Γ ⊢𝜋 𝑒2 :int Γ ⊢𝜋 𝑒3 :𝜏 𝜋 ≤ (Block,1) 𝜋 ′≤𝜋
Γ ⊢𝜋𝑚 𝑒1 [𝑒2]=𝑒3

T-Arr-Assn-Shared

Γ ⊢𝜋 𝑒 :bool Γ ⊢𝜋𝑚1 𝑠1 Γ ⊢𝜋𝑚2 𝑠2

Γ ⊢𝜋max(𝑚1,𝑚2 ) if 𝑒 then 𝑠1 else 𝑠2
T-If

Γ ⊢𝜋 𝑒 :bool Γ ⊢𝜋𝑚 𝑠
Γ ⊢𝜋𝑚 while 𝑒 do 𝑠

T-While
Γ ⊢𝜋𝑚1 𝑠1 Γ ⊢𝜋𝑚2 𝑠2

Γ ⊢𝜋max(𝑚1,𝑚2 ) 𝑠1;𝑠2
T-Seq

Γ,𝑥 :𝜋 𝜏 []𝑙 ⊢𝜋𝑚 𝑠 𝑙 =Global or 𝑙 =Local

Γ ⊢𝜋
𝑚+𝑛·size(𝜏 ) 𝑥 :=alloc 𝑙 𝜏 𝑛 in 𝑠

T-Alloc

Γ,𝑥 :(Block,1) 𝜏 []Shared ⊢𝜋𝑚 𝑠
Γ ⊢(Block,1)

𝑚+𝑛·size(𝜏 ) 𝑥 :=alloc Shared 𝜏 𝑛 in 𝑠
T-Alloc-Shared

Γ,𝑦 :(h,𝑛/𝑐 ) 𝜏 []𝑙 ⊢(h,𝑛)𝑚 𝑠 𝑐 |𝑛 𝑙 ≠Local

Γ,𝑥 :(h,𝑛) 𝜏 []𝑙 ⊢(h,𝑛)𝑚 partition𝜓 𝑥 into 𝑦 by 𝑐 in 𝑠
T-Partition

Γ,𝑦 :(h,𝑛′ ) 𝜏 []𝑙 ⊢(h,𝑛
′ )

𝑚 𝑠 𝑛′≤𝑛 𝑙 ≠Local

Γ,𝑥 :(h,𝑛) 𝜏 []𝑙 ⊢(h,𝑛)𝑚 claim𝜓 𝑥 into 𝑦 at 𝑛′ in 𝑠
T-Claim
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Γ,𝑦 :↓𝜋 𝜏 []𝑙 ⊢𝜋𝑚 𝑠 𝑙 ≠Local

Γ,𝑥 :𝜋 𝜏 []𝑙 ⊢𝜋𝑚 lower𝜓 𝑥 into 𝑦 in 𝑠
T-Lower

Γ,𝑦 :(Thread,1) async 𝜏 []𝑙 ⊢(Thread,1)𝑚 𝑠

Γ,𝑥 :(Thread,1) 𝜏 []𝑙 ⊢(Thread,1)𝑚 async_partition𝜙 𝑥 into 𝑦 in 𝑠
T-Async-Partition

Γ,𝑥 :(Thread,1) async 𝜏 []𝑙 ,𝑦 :(Thread,1) 𝜏 []𝑙 ′ ⊢(Thread,1)𝑚 async_mempcy(𝑥,𝑦)
T-Async-Memcpy

Γ,𝑥 :𝜋 𝜏 []𝑙 ,𝑦 :𝜋 𝜏 []𝑙 ′ ⊢𝜋𝑚 memcpy(𝑥,𝑦)
T-Memcpy

A.3 Complete Bundl Semantics
A.3.1 Definitions.

Global Memory Σ ::= · |Σ,𝑛 ↦→𝜋 𝑣

Shared Memory 𝜎 ::= · |𝜎,𝑛 ↦→𝜋 𝑣

Local Memory 𝜂 ::= · |𝜂,𝑛 ↦→𝜋 𝑣

Block MemoryMap 𝑆 ::=∀𝑛 ∈𝐵,𝑛 ↦→𝜎

Thread MemoryMap 𝐿 ::=∀𝑛 ∈𝑇,𝑛 ↦→𝜂

Synchronization Map Ψ :𝜓→N→N

Deferred Computations Map Φ :𝜙→{𝑠}

In real GPUs, thread IDs are only uniquewithin their block. However, in this calculus for simplicity
we assume thread IDs are global. One can convert back and forth between this abstracted notion
of a thread ID and a block-unique ID via addition modulo 𝑇 . That is, 𝑡real = 𝑡simplified mod𝑇 and
𝑡simplified=𝑡real+𝑏 ·𝑇 .

By convention the names for local and shared and global memory do not conflict, as on the GPU
they will be separate pointer spaces. Additionally, we freely interchange between using names for
variables and integer locations.

In the main body of the paper, for simplicity we elide the synchronization map and the deferred
computation map from the operational semantics, as our theorems do not make any guarantees
about non-interference. However, as they are part of the full semantics, we include them here
for completeness. By convention the synchronization and deferred computation maps are a total
functions, initialized to map to 𝜆_.0 for𝜓s and 𝜆_.{} for 𝜙s not explicitly initialize.

The shape of the judgment for a single thread is𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ⊢𝜋𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′. The 𝑡 here is
the thread ID, the 𝑏 is the block ID, and the 𝑝 is the perspective ID. The last of these three is modified
and managed by the rules for split, group and destruct, and tracks the relative position of the
thread within a group. This semantics is in a small step style.
The shape of the judgment for expressions is 𝜂,𝜎,Σ ⊢𝜋

𝜋 ′ 𝑒 ⇓ 𝑣 . The two 𝜋s represent the ambient
compute context (i.e., the context in which resources are being read), while 𝜋 ′, represents the target
compute context (i.e, the compute context of the variable into which the result of the expression is
going to bewritten. This is relevant for computing the value of partition_id, which divides the two
contexts. As a shorthand, we can divide a perspective by a scalar value like so: (h,𝑛)/𝑐= (h,𝑛)/(h,𝑐).
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The overall evaluation of a program is expressed as

𝐿,𝑆,Σ,𝑃,Ψ,Φ{𝐿′,𝑆 ′,Σ′,𝑃 ′,Ψ′,Φ′ .

In this judgment𝑃 serves as a thread pool, mapping pairs of thread and block IDs (which don’t change)
to statements andmemory (which can be updated by stepping). One can think of 𝑃 as tracking which
program is running on each thread. This steps according to the following rule:

𝐿(𝑡),𝑆 (𝑏),Σ,𝑡,𝑏,0,Ψ,Φ⊢(Grid,1)𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′ 𝑃 (𝑡,𝑏)= (𝑠,𝑚)
𝐿,𝑆,Σ,𝑃,Ψ,Φ{𝐿[𝑡 ↦→𝜂′],𝑆 [𝑏 ↦→𝜎 ′],Σ′,𝑃 [(𝑡,𝑏) ↦→ (𝑠′,𝑚′)],Ψ′,Φ′ S-Program

For simplicity of notation, we define an update operation that searches the three environments
for the one that contains the variable being used (by convention, there is no conflict between the
environments, as in reality they exist in three separate address spaces). We also define a similar get
operation that retrieves a variable frommemory, and a rename operation that remaps a variable
with the same value but under a different name.

update(𝜂,𝜎,Σ,𝑥,𝑣)= (𝜂 [𝑥 ↦→𝜋 𝑣],𝜎,Σ) when 𝑥 ∈𝜋 𝜂
update(𝜂,𝜎,Σ,𝑥,𝑣)= (𝜂,𝜎 [𝑥 ↦→𝜋 𝑣],Σ) when 𝑥 ∈𝜋 𝜎
update(𝜂,𝜎,Σ,𝑥,𝑣)= (𝜂,𝜎,Σ[𝑥 ↦→𝜋 𝑣]) when 𝑥 ∈𝜋 Σ

get(𝜂,𝜎,Σ,𝑥)=𝜂 (𝑥) when 𝑥 ∈𝜋 𝜂
get(𝜂,𝜎,Σ,𝑥)=𝜎 (𝑥) when 𝑥 ∈𝜋 𝜎
get(𝜂,𝜎,Σ,𝑥)=Σ(𝑥) when 𝑥 ∈𝜋 Σ

rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋 ′)= (𝜂 [𝑦 ↦→𝜋 ′ 𝜂 (𝑥)],𝜎,Σ) when 𝑥 ∈𝜋 𝜂
rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋 ′)= (𝜂,𝜎 [𝑦 ↦→𝜋 ′ 𝜎 (𝑥)],Σ) when 𝑥 ∈𝜋 𝜎
rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋 ′)= (𝜂,𝜎,Σ[𝑦 ↦→𝜋 ′ Σ(𝑥)]) when 𝑥 ∈𝜋 Σ

A.3.2 Perspective Management Rules.

𝑝 <𝑛1 𝑛1,𝑛2 align to 𝑛 𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛1 )𝑚 𝑠1{𝑠′1 ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){𝑠1}{𝑠2}{split(𝑛1,𝑛2){𝑠′1}{𝑠2} ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′
S-Split-Left

𝑝 <𝑛1 𝑛1,𝑛2 align to 𝑛

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){skip}{𝑠2}{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Split-Left-Done

𝑝≥𝑛1 𝑝 <𝑛1+𝑛2 𝑛1,𝑛2 align to 𝑛 𝜂,𝜎,Σ,𝑡,𝑏,𝑝−𝑛1,Ψ,Φ⊢(h,𝑛2 )𝑚 𝑠2{𝑠′2 ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){𝑠1}{𝑠2}{split(𝑛1,𝑛2){𝑠1}{𝑠′2} ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′
S-Split-Right

𝑝≥𝑛1 𝑝 <𝑛1+𝑛2 𝑛1,𝑛2 align to 𝑛

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){𝑠1}{skip}{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Split-Right-Done

𝑝≥𝑛1+𝑛2 𝑛1,𝑛2 align to 𝑛

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛)𝑚 split(𝑛1,𝑛2){𝑠1}{𝑠2}{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Split-None
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𝜂,𝜎,Σ,𝑡,𝑏,𝑡 mod𝑇,Ψ,Φ⊢(Thread,𝑇 )𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,0,Ψ,Φ⊢(Block,1)𝑚 destruct in 𝑠{destruct in 𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′
S-Destruct-Block

𝜂,𝜎,Σ,𝑡,𝑏,𝑏mod 𝐵,Ψ,Φ⊢(Block,𝐵)𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,0,Ψ,Φ⊢(Grid,1)𝑚 destruct in 𝑠{destruct in 𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′
S-Destruct-Grid

𝜂,𝜎,Σ,𝑡,𝑏,0,Ψ,Φ⊢𝜋𝑚 destruct in skip{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Destruct-Done

𝜂,𝜎,Σ,𝑡,𝑏,𝑝mod 𝑛,Ψ,Φ⊢(h,𝑛)𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑞 ·𝑛)𝑚 group 𝑞 𝑠{group 𝑞 𝑠′;⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′
S-Group

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 group 𝑞 skip{skip;⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Group-Done

A.3.3 Thread Synchronization. We define a size operation on perspectives to compute the size of a
perspective (the number of individual compute resources sharing it). The operation is defined thusly:

size(Thread,𝑛)=𝑛
size(Block,𝑛)=𝑛 ·𝑇
size(Grid,𝑛)=𝑛 ·𝐵 ·𝑇

Ψ(𝜓 ) (𝑝)=0
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 wait𝜓{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ

S-Sync-Wait-Done

Ψ(𝜓 ) (𝑝)≠0
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 wait𝜓{wait𝜓 ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ

S-Sync-Wait-Spin

Ψ′=Ψ(𝜓 ) [𝑝 ↦→Ψ(𝜓 ) (𝑝)−1]
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 dec𝜓{skip⊣𝑚 𝜂,𝜎,Σ,Ψ′,Φ

S-Sync-Dec

Ψ(𝜓 ) (𝑝)=0 Ψ′=Ψ(𝜓 ) [𝑝 ↦→size(𝜋)]
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 init𝜓{skip⊣𝑚 𝜂,𝜎,Σ,Ψ′,Φ

S-Sync-Init-Zero

Ψ(𝜓 ) (𝑝)≠0
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 init𝜓{skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ

S-Sync-Init-Nonzero

A.3.4 Asynchrony.

rename(𝜂,𝜎,Σ,𝑥,𝑦,(Thread,1)),𝑡,𝑏,𝑝,Ψ,Φ⊢(Thread,1)𝑚 𝑠{𝑠′ ⊣𝑚′ 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(Thread,1)
𝑚′ async_partition𝜙 𝑥 into 𝑦 in 𝑠{

async_partition𝜙 𝑥 into 𝑦 in 𝑠′ ⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ′,Φ′

S-Async-Partition-Congr

Φ=Φ′ [𝜙 ↦→Φ′ (𝜙)∪{𝑠}]
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(Thread,1)𝑚 async_partition𝜙 𝑥 into 𝑦 in skip{

(async_partition𝜙 𝑥 into 𝑦 in 𝑠) ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ′

S-Async-Partition-Unwind

https://manya-bansal.github.io/
https://www.sainati.pl/
https://www.cis.upenn.edu/%7e%6a%77%63/
https://people.csail.mit.edu/%73%61%6D%61%6E/
https://people.csail.mit.edu/%6A%72%6B/


Modular GPU Programming with Typed Perspectives 29

Φ(𝜙)=∅
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(Thread,1)𝑚 async_partition𝜙 𝑥 into 𝑦 in skip{

skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ

S-Async-Partition-Done

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(Thread,1)𝑚 async_mempcy(𝑥,𝑦){
skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ[𝜙 ↦→Φ(𝜙)∪{memcpy(𝑥,𝑦)}]

S-Async-Memcpy

(𝜂′,𝜎 ′,Σ′)=update(𝜂,𝜎,Σ,𝑥,get(𝜂,𝜎,Σ,𝑦))
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 memcpy(𝑥,𝑦){skip⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ

S-Memcpy

A.3.5 Variables and Memory.

𝜂,𝜎,Σ⊢𝜋
𝜋 ′ 𝑒 ⇓𝑣 𝜋 ′≤𝜋

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑥 :𝜏 @ 𝜋 ′ :=𝑒 in 𝑠{𝑠 ⊣𝑚 𝜂 [𝑥 ↦→𝜋 ′ 𝑣],𝜎,Σ,Ψ,Φ
S-Decl

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 free 𝑛 ⊣𝑚−𝑛 𝜂,𝜎,Σ,Ψ,Φ
S-Free

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑥 :=alloc Local 𝜏 𝑛 in 𝑠{
𝑠 ; free (𝑛 ·size(𝜏)) ⊣𝑚+𝑛·size(𝜏 ) 𝜂 [𝑥 ↦→𝜋 ⟨𝑥,𝑛⟩],𝜎,Σ,Ψ,Φ

S-Alloc-Local

𝜋 = (Block,1)
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑥 :=alloc Shared 𝜏 𝑛 in 𝑠{

𝑠; free (𝑛 ·size(𝜏)) ⊣𝑚+𝑛·size(𝜏 ) 𝜂,𝜎 [𝑥 ↦→𝜋 ⟨𝑥,𝑛⟩],Σ,Ψ,Φ
S-Alloc-Shared

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑥 :=alloc Global 𝜏 𝑛 in 𝑠{
𝑠 ; free (𝑛 ·size(𝜏)) ⊣𝑚+𝑛·size(𝜏 ) 𝜂,𝜎,Σ[𝑥 ↦→𝜋 ⟨𝑥,𝑛⟩],Ψ,Φ

S-Alloc-Global

𝑥 ∈𝜋 ′ 𝜂,𝜎,Σ 𝜂,𝜎,Σ⊢𝜋
𝜋 ′ 𝑒 ⇓𝑣 (𝜂′,𝜎 ′,Σ′)=update(𝜂,𝜎,Σ,𝑥,𝑣) 𝜋 ′≤𝜋

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ,Φ⊢𝜋𝑚 𝑥 =𝑒{skip⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ
S-Assn

𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋𝜋 𝑒1 ⇓ ⟨𝑙,𝑛⟩
𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋𝜋 𝑒2 ⇓𝑖
𝜂,𝜎,Σ⊢𝜋

𝜋 ′ 𝑒3 ⇓𝑣

𝑖 <𝑛 𝜋 ′≤𝜋
𝑥 ∈𝜋 ′ 𝜂,𝜎,Σ

(𝜂′,𝜎 ′,Σ′)=update(𝜂,𝜎,Σ,𝑙+𝑖,𝑣)
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑒1 [𝑒2]=𝑒3{skip⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ

S-Arr-Assn

𝑠′=𝑠 [(𝑦+𝑐 ·𝑝)/𝑦] (𝜂′,𝜎 ′,Σ′)=rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋/𝑐)
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝜓𝑥𝑦𝑐𝑠{init𝜓 ;𝑠′;dec𝜓 ;wait𝜓 ⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ

S-Partition

(𝜂′,𝜎 ′,Σ′)=rename(𝜂,𝜎,Σ,𝑥,𝑦,(h,𝑛1))
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑛1+𝑛2 )𝑚 claim𝜓 𝑥 into 𝑦 at 𝑛1 in 𝑠{
init𝜓 ;split(𝑛1,𝑛2){𝑠′}{skip};dec𝜓 ;wait𝜓 ⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ

S-Claim

(𝜂′,𝜎 ′,Σ′)=rename(𝜂,𝜎,Σ,𝑥,𝑦,↓𝜋)
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 lower𝜓 𝑥 into 𝑦 in 𝑠{init𝜓 ;𝑠;dec𝜓 ;wait𝜓 ⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ

S-Lower
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A.3.6 Control Flow.
𝜂,𝜎,Σ⊢𝜋𝜋 𝑒 ⇓true

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 if 𝑒 then 𝑠1 else 𝑠2{𝑠1 ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-If-True

𝜂,𝜎,Σ⊢𝜋𝜋 𝑒 ⇓false
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 if 𝑒 then 𝑠1 else 𝑠2{𝑠2 ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ

S-If-False

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 while 𝑒 do 𝑠{if 𝑒 then (𝑠; while 𝑒 do 𝑠) else skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-While

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑠1{𝑠′1 ⊣𝜋
′

𝑚′ 𝜂
′,𝜎 ′,Σ′,Ψ′,Φ′

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑠1;𝑠2{𝑠′1;𝑠2 ⊣𝜋
′

𝑚′ 𝜂
′,𝜎 ′,Σ′,Ψ′,Φ′

S-Seq-First

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 skip;𝑠2{𝑠2 ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ
S-Seq-Done

Σ(𝑓 )={[𝑥1 :𝜏1,...,𝑥𝑛 :𝜏𝑛],𝑠} 𝜎,Σ⊢𝜋𝜋 𝑒𝑖 ⇓𝑣𝑖 𝑚′≤𝑚
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑓 (𝑒1,...,𝑒𝑛){𝑠 ⊣𝑚 𝜂 [𝑥𝑖 ↦→𝑣𝑖 ],𝜎,Σ,Ψ,Φ

S-Function-Call

A.3.7 Expressions.
𝜋 < (Grid,1) 𝜋 ′≤𝜋

𝜂,𝜎,Σ⊢𝜋
𝜋 ′ partition_id⇓𝜋/𝜋

′−1 E-Partition-Id

𝜂,𝜎,Σ⊢𝜋
𝜋 ′ 𝑥 ⇓get(𝜂,𝜎,Σ,𝑥)

E-Var

𝜂,𝜎,Σ⊢𝜋
𝜋 ′ 𝑒1 ⇓ ⟨𝑙,𝑛⟩ 𝜂,𝜎,Σ⊢𝜋

𝜋 ′ 𝑒2 ⇓𝑖 𝑖 <𝑛 𝜋 ′≤𝜋
𝜂,𝜎,Σ⊢𝜋

𝜋 ′ 𝑒1 [𝑒2] ⇓get(𝜂,𝜎,Σ,𝑙+𝑖)
E-Arr-Access

𝜂,𝜎,Σ⊢𝜋
𝜋 ′⊢𝑛⇓𝑛

E-Int
𝜂,𝜎,Σ⊢𝜋

𝜋 ′⊢𝑏 ⇓𝑏
E-Bool

𝜂,𝜎,Σ⊢𝜋
𝜋 ′⊢𝑒1 ⇓𝑣1 𝜂,𝜎,Σ⊢𝜋

𝜋 ′ 𝑒2 ⇓𝑣2 𝑣 =𝑣1 bop 𝑣2

𝜂,𝜎,Σ⊢𝜋
𝜋 ′⊢𝑒1 bop 𝑒2 ⇓𝑣

E-Bop

𝜂,𝜎,Σ⊢𝜋
𝜋 ′⊢𝑒1 ⇓𝑣1 𝜂,𝜎,Σ⊢𝜋

𝜋 ′ 𝑒2 ⇓𝑣2 𝑣 =𝑣1 cmp 𝑣2

𝜂,𝜎,Σ⊢𝜋
𝜋 ′⊢𝑒1 cmp 𝑒2 ⇓𝑣

E-Cmp

A.4 Theorems and Proofs
Note that in this section we assume no out of bounds array accesses. In general Prism (and by
extension Bundl) makes no guarantees about array out of bounds.

A.4.1 More definitions. As a premise to our type safety theorems, we need to assume we have a
well-typed environment, written Γ ⊢𝜂,𝜎,Σ. We define what this means inductively

𝜂,𝜎,Σ⊢𝑛 :int V-Int
𝜂,𝜎,Σ⊢𝑏 :bool V-Bool

𝜂,𝜎,Σ⊢ 𝑓 :float V-Float

∀𝑖 <𝑛,𝜂,𝜎,Σ⊢get(𝜂,𝜎,Σ,𝑥+𝑖) :𝜏
𝜂,𝜎,Σ⊢ ⟨𝑥,𝑛⟩ :𝜏 []𝑙

V-Array Γ,𝑥𝑖 :𝜋 𝜏𝑖 ⊢𝜋𝑚 𝑠 Γ ⊢ ·,·,fns Σ
𝜂,𝜎,Σ⊢ {𝑥𝑖 :𝜏𝑖 ,𝑠} :Fun(𝑥𝑖 :𝜏𝑖 ,𝜋,𝑚)

V-Function

· ⊢𝜂,𝜎,Σ G-Empty
𝜂 (𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :int

Γ,𝑥 :𝜋 int⊢𝜂,𝜎,Σ G-Int
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𝜂 (𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :bool
Γ,𝑥 :𝜋 bool⊢𝜂,𝜎,Σ G-Bool

𝜂 (𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :float
Γ,𝑥 :𝜋 float⊢𝜂,𝜎,Σ G-Float

𝜂 (𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :𝜏 []
Γ,𝑥 :𝜋 𝜏 []Local ⊢𝜂,𝜎,Σ

G-Local
𝜎 (𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :𝜏 []
Γ,𝑥 :𝜋 𝜏 []Shared ⊢𝜂,𝜎,Σ

G-Shared

Σ(𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :𝜏 []
Γ,𝑥 :𝜋 𝜏 []Global ⊢𝜂,𝜎,Σ

G-Global
Σ(𝑥)=𝜋 𝑣 𝜂,𝜎,Σ⊢𝑣 :Fun(Γ′,𝜋,𝑚)

Γ,𝑥 :𝜋 Fun(Γ′,𝜋,𝑚) ⊢𝜂,𝜎,Σ G-Function

We can prove a couple simple lemmas about well-typed environments under operations like
rename, update, and get.

Lemma A.1. (Well-typed get) If Γ ⊢𝜂,𝜎,Σ and 𝑥 :𝜋 𝜏 ∈ Γ then 𝜂,𝜎,Σ⊢get(𝜂,𝜎,Σ,𝑥) :𝜏 .

Lemma A.2. (Well-typed rename) If Γ,𝑥 :𝜋 𝜏 ⊢𝜂,𝜎,Σ then Γ,𝑥 :𝜋 𝜏,𝑦 :𝜋 ′ 𝜏 ⊢rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋 ′).

Lemma A.3. (Well-typed update) If Γ ⊢𝜂,𝜎,Σ and 𝜂,𝜎,Σ⊢𝑣 :𝜏 then Γ,𝑥 :𝜋 𝜏 ⊢update(𝜂,𝜎,Σ,𝑥,𝑣).

We also define a well-formedness precondition on 𝑝 with respect to 𝜋 :
(h,𝑛) ⊢𝑝 ::=𝑝 <𝑛

We also define well-formedness for the async stack:

Γ ⊢Φ ::=∀𝜙,𝑠 ∈Φ(𝜙),Γ ⊢(Thread,1)𝑚 𝑠

A.5 Proofs
Lemma A.4. (Expression Safety) If Γ ⊢𝜋 𝑒 :𝜏 and Γ ⊢𝜂,𝜎,Σ and 𝜋 ⊢𝑝 and 𝜋 ′≤𝜋 , then there is some 𝑣

such that 𝜂,𝜎,Σ⊢𝜋
𝜋 ′ 𝑒 ⇓𝑣 and 𝑣 :𝜏 .

Proof. This proof proceeds by induction on the typing relation for expressions. Despite the fact
that this property implies termination, we do not need a logical relation to prove it because the
expression language is very simple.
The T-Int, T-Float, and T-Bool cases are trivial, using the rules E-Int, E-Bool and E-Float to

compute values. In the case forT-Partition-Id, the𝜋 premises of the typing rules and our assumption
that 𝜋 ′≤𝜋 match the premises of the evaluation rule, so this rule is simple as well.
The cases for T-Bop and T-Cmp follow directly from the inductive hypotheses, assuming a valid

and correctly implemented set of binary operators and comparators.
The only interesting cases are T-Arr-Access and T-Arr-Access-Shared.
In both cases our inductive hypotheses and inversion give us that 𝜋 ′ ≤ 𝜋 , and 𝑒1 evaluates to a
⟨𝑥,𝑛⟩, and that all the values between 𝑥 and 𝑥+𝑛 in the appropriate environment are typed at 𝜏 . We
also know that 𝑒2 evaluates to an integer 𝑖 . We assume that all array accesses are in bounds, so 𝑖 < 𝑙 ,
which is sufficient to use the E-Arr-Access rule to complete this case, and the proof. □

Lemma A.5. (Expression Determinism) If 𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋
𝜋 ′ 𝑒 ⇓𝑣1 and 𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋𝜋 ′ 𝑒 ⇓𝑣2 then 𝑣1=𝑣2.

Proof. Straightforward by induction on the semantic derivation. □

Lemma A.6. (ExpressionWell-Typedness) If Γ ⊢𝜋
𝜋 ′ 𝑒 :𝜏 and Γ ⊢𝜂,𝜎,Σ and 𝜋 ⊢𝑝 , and 𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋

𝜋 ′ 𝑒 ⇓𝑣 ,
then 𝑣 :𝜏 .

Proof. By our expression safety lemma our well-typed expression must evaluate to a well-typed
value 𝑣 ′. By our determinism lemma 𝑣 ′ must be the same as 𝑣 , so 𝑣 is well-typed. □
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Lemma A.7. (Statement Progress) If Γ ⊢𝜂,𝜎,Σ and Γ ⊢𝜋𝑚 𝑠 and 𝜋 ⊢𝑝 , then either 𝑠 is skip or there is
some 𝑠′ such that 𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋

𝑚′ 𝑠{𝑠′ ⊣𝑚′′ 𝜂′,𝜎 ′,Σ,Ψ′,Φ′

Proof. This proceeds by induction on the typing derivation.

Perspective Management Rules.

• Case T-Split:
In this casewe have by our assumption that𝜋 ⊢𝑝 that𝑝 <𝑛.We also have that𝑛1,𝑛2 align to 𝑛,
so𝑛1+𝑛2≤𝑛. There are three cases to consider, then: when 𝑝 <𝑛1, when 𝑝≥𝑛1 and 𝑝 <𝑛1+𝑛2,
and when 𝑝≥𝑛1+𝑛2.
In the first case, we have by our inductive hypothesis that 𝑠 is either skip or that it can step
in an (h,𝑛1) context. In the former case we can use the S-Split-Left-Done rule and in the
latter we can use the S-Split-Left rule.
The second case is almost symmetric. The only additional work we have to do is to argue
that (h,𝑛2) ⊢ 𝑝−𝑛1, or equivalently that 𝑝−𝑛1 < 𝑛2. This, however, is immediate from our
assumption that 𝑝 <𝑛1+𝑛2.
In the last case, we just use the S-Split-None rule to step to skip.
• Case T-Destruct

By our inductive hypothesis, we know that 𝑠 can step at ↓𝜋 if ↓𝜋 ⊢𝑝 . The ↓ operation is only
defined at (Block,1) or (Grid,1), so we only need to consider the cases where 𝜋 is one of
those.
In the former case 𝑝 becomes 𝑡 mod𝑇 while ↓𝜋 is (Thread,𝑇 ). 𝑡 mod𝑇 <𝑇 for any 𝑡 so this
satisfies the requirement that 𝜋 ⊢𝑝 , which lets us use our inductive hypothesis: 𝑠 is either
skip or can step. If it can step, we can use this to satisfy the premise of S-Destruct-Block to
step in this case. If it is skip, then we use the rule S-Destruct-Done to step instead.
The latter case is the same, except using the fact that 𝑏mod 𝐵<𝐵 and the S-Destruct-Grid
rule.
• Case T-Group
In this case we have by assumption that (h,𝑞 ·𝑛) ⊢𝑝 , i.e., that 𝑝 <𝑞 ·𝑛.
In this case we have our IH that if (h,𝑛) ⊢𝑝′ for some 𝑝′, then 𝑠 is either skip or steps with
(h,𝑛) perspective with 𝑝′ as our perspective ID.
We choose 𝑝′ to be 𝑝mod 𝑛. This is always <𝑛, so (h,𝑛) ⊢𝑝′. This lets us use our IH to get
that 𝑠 is either skip (in which case we can use the S-Group-Done rule to step) or itself steps,
which lets us use the S-Group rule to step.

Thread Synchronization Rules.

• Case T-Sync-Wait
Ψ(𝜓 ) (𝑝) is either zero or it is not. In the former case we use the S-Sync-Wait-Done rule and
in the latter we use S-Sync-Wait-Spin.
• Case T-Sync-Dec
We use the S-Sync-Dec rule to step.
• Case T-Sync-Init
Weuse the S-Sync-Init-Zero or S-Sync-Init-Nonzero rules depending onwhetherΨ(𝜓 ) (𝑝)
is zero or not.

Asynchrony Rules.

• Case T-Async-Partition
In this case, we have via our IH that if Γ,𝑦 :(Thread,1) async 𝜏 []𝑙 ⊢𝜂′,𝜎 ′,Σ′, then we can either
step 𝑠 with (Thread,1) perspective under environments 𝜂′, 𝜎 ′, and Σ′, or 𝑠 is skip.
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We have by assumption that Γ,𝑥 :(Thread,1) async 𝜏 []𝑙 ⊢𝜂,𝜎,Σ. By our environment renaming
lemma, thisgivesuswhatweneedtouseour IHwith (𝜂′,𝜎 ′,Σ′) asrename(𝜂,𝜎,Σ,𝑥,𝑦,(Thread,1)).
Thus 𝑠 either steps or is skip. In the former casewe can stepwith S-Async-Partition-Congr,
and in the latterwe canuse eitherS-Async-Partition-UnwindorS-Async-Partition-Done
depending on whether Φ(𝜙) is empty or not.
• Case T-Async-Memcpy
Immediate via use of the S-Async-Memcpy rule.
• Case T-Memcpy
Immediate via use of the S-Memcpy rule.

Memory Rules.

• Case T-Decl
Via our lemma about expression type safety and our hypothesis that 𝑒 is well-typed,we obtain
the premises necessary to use the S-Decl rule to step.
• Case T-Arr-Assn

Each of 𝑒1, 𝑒2 and 𝑒3 must evaluate to a well-typed value by the expression type safety lemma.
In particular, both 𝑒1 evaluates to some ⟨𝑙,𝑛⟩ and 𝑒2 evaluates to some 𝑖 . We assume all array
accesses are in bounds, so this is sufficient to use the S-Arr-Assn rule to step.
• Case T-Arr-Assn-Shared
Same as previous case.
• Case T-Free
Trivial via the S-Free rule.
• Case T-Partition
Trivial via the S-Partition rule.
• Case T-Claim
Trivial via the S-Claim rule.
• Case T-Lower
Trivial via the S-Lower rule.
• Case T-Alloc
We assume that 𝑙 is not Shared, so we can use the S-Alloc-Local or S-Alloc-Global rule,
depending on whether 𝑙 is Local or Global.
• Case T-Alloc-Shared
Trivial via the S-Alloc-Shared rule.

Control Rules.

• Case T-Skip
Trivial
• Case T-While
Trivial, all while loops step via the S-While rule
• Case T-If

By our proof of expression type safety, the expression 𝑒 steps to either the boolean value true
or false. We can thus use either the S-If-True or S-If-False rules to step.
• Case T-Seq
In this case we know by our IH that 𝑠1 is either skip or can step. In the former case we use
the S-Seq-Done rule and in the latter we use the S-Seq-First rule.
• Case T-Function-Call

In this caseweknowbyourexpressionsafety lemmathateachof theargumentswill evaluate to
awell-typed value.We also have by assumption that 𝑓 has a function type, which by inversion
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on theV-Function rule tells us that it is a closure type. Additionally our assumption that
Γ ⊢𝜂,𝜎,Σ tell us that Σ contains 𝑓 at the same type that Γ does. These premises are sufficient
to use the S-Function-Call rule.

□

Lemma A.8. (Statement Preservation) If Γ ⊢ 𝜂,𝜎,Σ and Γ ⊢𝜋𝑚 𝑠 and 𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ ⊢𝜋𝑚′ 𝑠{ 𝑠′ ⊣𝑚′′
𝜂′,𝜎 ′,Σ,Ψ′,Φ′ and 𝜋 ⊢𝑝 and𝑚≥𝑚′ and Γ ⊢Φ, then there is some Γ′ such that Γ ⊆ Γ′ and Γ′ ⊢𝜋𝑚 𝑠′ and
Γ′ ⊢𝜂′,𝜎 ′,Σ′ and𝑚≥𝑚′′ and Γ′ ⊢Φ′.

Proof. We proceed by induction on the derivation of Γ ⊢𝜋𝑚 𝑠 .

Perspective Management Rules.

• Case T-Split
In this case we have by assumption that (h,𝑛) ⊢ 𝑝 , Γ ⊢ 𝜂,𝜎,Σ, and 𝜂,𝜎,Σ, 𝑡,𝑏, 𝑝,Ψ,Φ ⊢𝜋

𝑚′

split(𝑛1,𝑛2){𝑠1}{𝑠2}{𝑠′ ⊣𝑚′′ 𝜂′,𝜎 ′,Σ,Ψ′,Φ′. Our inductive hypotheses give us that if for any
𝑝 , if (h,𝑛1) ⊢𝑝 and 𝑠1 steps with perspective ID 𝑝 , or if (h,𝑛2) ⊢𝑝 and 𝑠2 steps with perspective
ID 𝑝 then their results are well typed.
By inversion on our semantic derivation, we are in one of 5 cases.
In the S-Split-Left case𝑝 <𝑛1 and 𝑠1 steps to 𝑠′1. This is sufficient to tell us that 𝑠′1 is well-typed
and the output environments of that relation 𝜂′,𝜎 ′, and Σ′ are all well-typed by Γ′ ⊇ Γ, and
that the memory is properly bounded by the typing rules.
We can thus use the T-Split-Left rule to conclude that the result of this case is well-typed.
The S-Split-Left-Done rule is trivial via the T-Skip rule.
TheRight cases are symmetric, with the observation that when 𝑝≥𝑛1 and 𝑝 <𝑛1+𝑛2 then
𝑝−𝑛1<𝑛2.
The last S-Split-None rule is trivial via the T-Skip rule.
• Case T-Destruct
In this case we have by assumption that ↓𝜋 is defined, so 𝜋 is either (Block,1) or (Grid,1).
We also assume that 𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋

𝑚′ destruct in 𝑠{𝑠′ ⊣𝑚′′ 𝜂′,𝜎 ′,Σ,Ψ′,Φ′. We also have
by our inductive hypothesis that for any 𝑝 such that ↓𝜋 ⊢𝑝 and 𝑠′′ such that 𝑠 steps to 𝑠′′ at 𝑝 ,
then that step preserved well-typedness.
By inversion on the step relation, we are in one of three cases.
If the rule used S-Destruct-Block, then we know that 𝑠 steps to 𝑠′′ and 𝑝 is 𝑡 mod𝑇 .
(Thread,𝑇 ) ⊢𝑡 mod𝑇 for any 𝑡 , so we can use our inductive hypothesis to conclude that the
𝑠′′ stepped to by 𝑠 is well-typed, as are its environments and memory usage. The T-Destruct
rule then gives us our desired goal.
The S-Destruct-Grid case proceeds similarly, while the S-Destruct-Done case is trivial.
• Case T-Group
In this case we have by assumption that
𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢(h,𝑞 ·𝑛)

𝑚′ group 𝑞 𝑠{𝑠′ ⊣𝑚′′ 𝜂′,𝜎 ′,Σ,Ψ′,Φ′.Wehave byour inductivehypothesis
that 𝑠 steps to 𝑠′′ at some perspective ID 𝑝′ and (ℎ,𝑛) ⊢𝑝′, then 𝑠′′ is well typed, as are the
other outputs of that step.
By inversion on the step relation, we are in one of two cases. The S-Group-Done case is
trivial, so we shall focus on the S-Group case. In this case we have that 𝑠 steps to 𝑠′′ at
perspective ID 𝑝mod 𝑛. It is always the case that (ℎ,𝑛) ⊢𝑝mod 𝑛 for any 𝑝 , so we can use
our inductive hypothesis to conclude that 𝑠′′ is well-typed, as are its output environments
and memory usage. From there, it is a simple application of theT-Group rule to conclude
that group 𝑞 𝑠′ is well-typed, and to finish the case.
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ThreadSynchronizationRules. These rulesareall trivial:withoneexceptionall threadsynchronization
primitives step to skip without changing environment or memory, and are thus obviously well-typed.
S-Sync-Wait-Spin does not produce skip, but it steps to the same statement as we already assumed
typechecks in the premise of the lemma, so is straightforward nonetheless.

If we wanted to say something about deadlock freedomwe’d have more work here, but we aren’t
doing that, so these rules are easy.

Asynchrony Rules.

• Case T-Async-Partition In this case we have that 𝑠 is well-typed in a context where 𝑥 has
been renamed into𝑦, with (Thread,1) perspective.We also have that Γ,𝑥 :(Thread,1) 𝜏 []𝑙 ⊢𝜂,𝜎,Σ
and Γ,𝑥 :(Thread,1) 𝜏 []𝑙Φ.
By inversion, we are in one of three cases.
In the S-Async-Partition-Done case, we are done.
In the S-Async-Partition-Congr case, our inductive hypothesis gives us that there is some
Γ′ such that Γ,𝑦 :(Thread,1) async 𝜏 []𝑙 ⊆ Γ′ and Γ′ ⊢Φ′ and Γ′ ⊢rename(𝜂,𝜎,Σ,𝑥,𝑦,(Thread,1))
via our well-typed renaming lemma. This lets us use the T-Async-Partition rule to check
this case, with a choice of Γ′ as Γ′,𝑥 :(Thread,1) 𝜏 []𝑙 .
In the S-Async-Partition-Unwind case, our assumption that Φ is well-typed tells us that
Γ,𝑦 :(Thread,1)⊢{ (Thread,1)𝑚𝑠 . Thus, we can use theT-Async-Partition rule to type this case.
• Case T-Async-Memcpy

In this case the statement and environment typing are trivial, we need only to show that the
async stack remains well typed.
In this case we have that 𝑥 and𝑦 have the same type at (Thread,1). This is sufficient for us
to check 𝑥 =𝑦 at (Thread,1), meaning that adding that instruction to the stack maintains its
well-typedness.
• Case T-Memcpy

Immediate via use of the S-Memcpy rule.We just need to show that the environment remains
well typed, which we know via our lemmas about update and get.

Memory Rules.

• Case T-Decl
By inversion,we are using S-Decl rule for evaluation. Ourwell-typed expression lemma gives
us that 𝑣 is well-typed, so it follows from our assumptions and our lemmas about extending
environments that the extended 𝜂 and 𝑠 are well-typed by Γ,𝑥 :𝜋 𝜏 .
• Case T-Free
Trivial.
• Case T-Alloc

By inversion we are either in the S-Alloc-Local or S-Alloc-Global rules. In either case, we
assume that Γ,𝑥 :𝜋 𝜏 []𝑙 checks 𝑠 , meaning we can use our extended environment lemmas and
the T-Seq and T-Free rules to check these cases.
• Case T-Alloc-Shared
Same as previous case.
• Case T-Partition
In this case we have by assumption that Γ,𝑦 :(ℎ,𝑛/𝑐 ) 𝜏 []𝑙𝑠 and 𝑙 is not local and 𝑐 divides 𝑛. By
inversiononoursteprelationwemustbe in theS-Partitioncase, sowehave𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝜓𝑥𝑦𝑐𝑠 { init𝜓 ;𝑠′;dec𝜓 ;wait𝜓 ⊣𝑚 𝜂′,𝜎 ′,Σ′,Ψ,Φ where 𝑠′ = 𝑠 [(𝑦 + 𝑐 · 𝑝)/𝑦] and
(𝜂′,𝜎 ′,Σ′)=rename(𝜂,𝜎,Σ,𝑥,𝑦,𝜋/𝑐). Via our well-typed renaming lemma contexts we know
that we can check the renamed environments in the extended environment Γ,𝑦 :𝜋/𝑐 𝜏 []𝑙 ,𝑥 :𝜋
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𝜏 []𝑙 , and this context is also sufficient to check 𝑠′ (via a substitution-preserves-typing lemma
that is obvious). Using the T-Skip rule this is exactly what we need to show to complete this
case, as the thread sync primitives check trivially via their typing rules.
• Case T-Claim
Essentially the same as T-Partition.
• Case T-Lower
Essentially the same as T-Partition.

Control Rules.

• Case T-If
We have by assumption that if 𝑒 then 𝑠1 else 𝑠2 steps to some 𝑠′, and by inversion we
know that either 𝑒 evaluates to true and 𝑠′ is 𝑠1, or 𝑒 evaluates to false and 𝑠′ is 𝑠2.
In either case, our inductive hypotheses is sufficient to tell us that these are well-typed. In
particular, in both cases our IHs tell us that the amount of memory used by stepping each
branch of the if is less than the amount of memory computed by the type system for each
branch. Because the whole if expression checks using the greater of thememory usage of𝑚1
or𝑚2 (i.e., the memory usage on each branch), the resulting usage for the whole conditional
is also bounded by the type system.
• Case T-Skip
Trivial: skip does not step
• Case T-Seq
In this case we have that 𝑠1 and 𝑠2 are both well-typed (with𝑚1 memory and𝑚2 memory
respectively), and𝑚=max(𝑚1,𝑚2). We also have by inversion that 𝑠1 either steps to skip or
𝑠′1, and our inductive hypothesis tells us that 𝑠′1 is well-typed.
In the former case we can use the S-Seq-Done rule to trivially finish the case. In the latter,
our IH allows us to finish the case, since𝑚1 is always ≤max(𝑚1,𝑚2)
• Case T-While
By inversion, we have that

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 while 𝑒 do 𝑠

{if 𝑒 then (𝑠; while 𝑒 do 𝑠) else skip⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ.

We also have by assumption that 𝑒 and 𝑠 are well-typed. With this information, through use
of the T-If, T-Seq, T-While, and T-Skip rules, we can conclude that the result of this rule is
also well-typed.
• Case T-Function-Call
By inversion we have that

𝜂,𝜎,Σ,𝑡,𝑏,𝑝,Ψ,Φ⊢𝜋𝑚 𝑓 (𝑒1,...,𝑒𝑛)
{call 𝑠 with (𝑥𝑖 :𝜋𝑖 𝜏𝑖 ↦→𝑣𝑖 )@{𝜂,𝜎,Σ,𝑚′} ⊣𝑚 𝜂,𝜎,Σ,Ψ,Φ,

and also that Σ(𝑓 )={[𝑥1 :𝜏1,...,𝑥𝑛 :𝜏𝑛],𝑠}, and 𝜂,𝜎,Σ,𝑡,𝑏,𝑝 ⊢𝜋 𝑒𝑖 ⇓𝑣𝑖 , and𝑚′≤𝑚.
We also have from the premises of our case that 𝑓 :𝜋 Fun(𝑥1 :𝜋1 𝜏1,...,𝑥𝑛 :𝜋𝑛 𝜏𝑛,𝜋,𝑚′) ∈ Γ, and
Γ ⊢𝜋 𝑒𝑖 :𝜏𝑖 , and𝑚′≤𝑚.
Our lemma for expression well-typedness tells us that that each 𝑣𝑖 is a well-typed value,
and our assumption that Γ ⊢𝜂,𝜎,Σ tells us that Σ(𝑓 ) is a well-typed function and thus that
fns Γ,𝑥𝑖 :𝜋𝑖 𝜏𝑖 ⊢𝜋𝑚′ 𝑠 . We can take the union of this with Γ to produce Γ,𝑥𝑖 :𝜋𝑖 𝜏𝑖 ⊢𝜋𝑚′ 𝑠 , which
clearly checks 𝑠 and the output environments.

□
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B Prism Programs
B.1 Complete TF32MatrixMultiplication

1 @prism("device")
2 @requires(thread[32])
3 def simple_mma(a: ptr(const(float)) @ thread[32],
4 b: ptr(const(float)) @ thread[32],
5 c: ptr(float) @ thread[32]):
6
7 with group(thread[32]):
8 stride : int @ thread[32] = 8
9
10 tid : int @ thread[1] = id()
11
12 regA: uint32_t[4] @ thread[1]
13 row_a : int @ thread[1] = tid / 4
14 col_a : int @ thread[1] = tid % 4
15 offsetA : int @ thread[1] = row_a * stride + col_a
16
17 regA[0] = __float_as_uint(a[offsetA + 0])
18 regA[1] = __float_as_uint(a[offsetA + 8 * stride]);
19 regA[2] = __float_as_uint(a[offsetA + 4]);
20 regA[3] = __float_as_uint(a[offsetA + 8 * stride + 4]);
21
22 regB: uint32_t[2] @ thread[1]
23 row_b : int @ thread[1] = tid % 4
24 col_b : int @ thread[1] = tid / 4
25 offsetB : int @ thread[1] = row_b * stride + col_b
26
27 regB[0] = __float_as_uint(b[offsetB + 0])
28 regB[1] = __float_as_uint(b[offsetB + 4 * stride])
29
30 regC: uint32_t[4] @ thread[1]
31 regC[0] = 0
32 regC[1] = 0
33 regC[2] = 0
34 regC[3] = 0
35
36 # Now do MMA!
37 intrinsic.mma(
38 regA[0], regA[1], regA[2], regA[3],
39 regB[0], regB[1],
40 regC[0], regC[1], regC[2], regC[3],
41 out=[regC[0], regC[1], regC[2], regC[3]]
42 )
43
44 row_c : uint32_t @ thread[1] = tid / 4
45 col_c : int @ thread[1] = tid % 4
46 offsetC : int @ thread[1] = row_c * stride + 2 * col_c
47
48 with partition(c, offset=offsetC, dimension=thread[1]) as c_thread:
49 with group(thread[1]):
50 c_thread[0] += __uint_as_float(regC[0])
51 c_thread[1] += __uint_as_float(regC[1])
52 c_thread[8 * stride] += __uint_as_float(regC[2])
53 c_thread[8 * stride + 1] += __uint_as_float(regC[3])
54
55 return

1 @prism("global")
2 @requires(grid[1], block[1], thread[32], smem=1280)
3 def mmaTF32NaiveKernel(A: ptr(const(float)) @ grid[1],
4 B: ptr(const(float)) @ grid[1],
5 C: ptr(float) @ grid[1],
6 M : int @ grid[1],
7 N : int @ grid[1],
8 K : int @ grid[1]):
9 with group(grid[1]):
10 MMA_N : constexpr(int) = 8
11 MMA_K : constexpr(int) = 8
12 MMA_M : constexpr(int) = 16
13 K_tiles : const(int) = (K + MMA_K - 1) / MMA_K
14
15 num_blocks_n : const(int) @ grid[1] = (N + MMA_N - 1) / MMA_N
16
17 block_row : const(int) @ block[1] = id() / num_blocks_n
18 block_col : const(int) @ block[1] = id() % num_blocks_n
19
20 warp_row: const(int) @ block[1] = block_row * MMA_M
21 warp_col : const(int) @ block[1] = block_col * MMA_N
22
23 with claim(C, scope=block[1], offset= warp_row * N + warp_col) as C_blk:
24 with group(block[1]):
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25 A_smem : shared(float[16 * 8]) @ block[1]
26 B_smem : shared(float[8 * 8]) @ block[1]
27 C_smem : shared(float[16 * 8]) @ block[1]
28
29 idx : int @ thread[1] = id() * 4
30 with partition(C_smem, dimension=thread[1], offset=idx) as C_thrd:
31 for i in range(0, 4, 1):
32 with group(thread[1]):
33 C_thrd[i] = 0
34
35 for i in range(0, K_tiles, 1):
36 a_idx : int @ thread[1] = id() * 4
37 # Sync point
38 for j in range(0, 4, 1):
39 flat_idx : int @ thread[1] = a_idx + j
40 row : int @ thread[1] = flat_idx / MMA_K
41 col : int @ thread[1] = flat_idx % MMA_K
42 global_row : int @ thread[1] = warp_row + row
43 global_col: int @ thread[1] = i * MMA_K + col
44 with partition(A_smem, dimension=thread[1], offset= row * MMA_K + col) as A_smem_thrd:
45 with group(thread[1]):
46 A_smem_thrd[0] = A[global_row * K + global_col]
47
48 b_idx : int @ thread[1] = id() * 2
49 # Sync point
50 for j in range(0, 2, 1):
51 flat_idx_b : int @ thread[1] = b_idx + j
52 row_b : int @ thread[1] = flat_idx_b / MMA_K
53 col_b : int @ thread[1] = flat_idx_b % MMA_K
54 global_row_b : int @ thread[1] = i * MMA_K + row_b
55 global_col_b : int @ thread[1] = warp_col + col_b
56 with partition(B_smem, dimension=thread[1], offset= row_b * MMA_K + col_b) as B_smem_thrd:
57 with group(thread[1]):
58 B_smem_thrd[0] = B[global_row_b * N + global_col_b]
59
60 # Sync point
61 with claim(C_smem, scope=thread[32], offset=0) as C_smem_warp:
62 match split(thread):
63 case 32:
64 simple_mma(A_smem, B_smem, C_smem_warp)
65
66 for j in range(0, 4, 1):
67 flat_idx_c : int @ thread[1] = id() * 4 + j
68 row_c : int @ thread[1] = flat_idx_c / MMA_K
69 col_c : int @ thread[1] = flat_idx_c % MMA_K
70 with partition(C_blk, dimension=thread[1], offset= row_c * N + col_c) as C_thrd:
71 with group(thread[1]):
72 C_thrd[0] = C_smem[row_c * MMA_N + col_c]
73 return

B.2 DifferentMatrixMultiplications Variants

1 @prism("global")
2 @requires(grid[1], block[1], thread[1], smem=49000)
3 def my_sgemm_kernel_1( M : int @ grid[1],
4 N : int @ grid[1],
5 K : int @ grid[1],
6 alpha : float @ grid[1],
7 A: ptr(const(float)) @ grid[1],
8 B: ptr(const(float)) @ grid[1],
9 beta : float @ grid[1],
10 C: ptr(float) @ grid[1],
11 block_size : int @ grid[1]):
12 with group(grid[1]):
13 bid : int @ block[1] = id()
14 with partition(C, dimension=block[1], offset=0) as C_blk:
15 with group(block[1]):
16 tid : int @ thread[1] = bid * block_size + id()
17 with partition(C_blk, dimension=thread[1], offset=0) as C_thrd:
18 x : const(int) @ thread[1] = tid / N
19 y : const(int) @ thread[1] = tid % N
20 with group(thread[1]):
21 tmp : float @ thread[1] = 0
22 for i in range(0, K, 1):
23 tmp += A[x * K + i] * B[i * N + y]
24 C_thrd[x * N + y] = alpha * tmp + beta * C[x * N + y]
25 return
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1 @prism("global")
2 @requires(grid[1], block[1], thread[1], smem=49000)
3 def my_sgemm_kernel_2( M : int @ grid[1],
4 N : int @ grid[1],
5 K : int @ grid[1],
6 alpha : float @ grid[1],
7 A: ptr(const(float)) @ grid[1],
8 B: ptr(const(float)) @ grid[1],
9 beta : float @ grid[1],
10 C: ptr(float) @ grid[1],
11 tile_size : int @ grid[1]):
12 with group(grid[1]):
13 global_tid: int @ thread[1] = id()
14 total_elements : const(int) @ grid[1] = M * N
15 num_tiles_per_row :const(int) @ grid[1] = (N + tile_size - 1) / tile_size
16 tile_id : const(int) @ thread[1] = global_tid / (tile_size * tile_size)
17 tile_row : const(int) @ thread[1] = tile_id / num_tiles_per_row
18 tile_col : const(int) @ thread[1] = tile_id % num_tiles_per_row
19 local_id : const(int) @ thread[1] = global_tid % (tile_size * tile_size)
20 local_row : const(int) @ thread[1] = local_id / tile_size
21 local_col : const(int) @ thread[1] = local_id % tile_size
22 cRow : const(int) @ thread[1] = tile_row * tile_size + local_row
23 cCol : const(int) @ thread[1] = tile_col * tile_size + local_col
24 with partition(C, dimension=thread[1], offset=cRow * N + cCol) as C_thrd:
25 with group(thread[1]):
26 if global_tid < total_elements:
27 if cRow < M and cCol < N:
28 tmp : float @ thread[1] = 0
29 for i in range(0, K, 1):
30 tmp += A[cRow * K + i] * B[i * N + cCol]
31 C_thrd[0] = alpha * tmp + beta * C_thrd[0]
32
33
34 return
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1 @prism("global")
2 @attr("__launch_bounds__((BM * BN) / (TM * TN), 1)")
3 @template([("BM", c_int),
4 ("BN", c_int),
5 ("BK", c_int),
6 ("TM", c_int),
7 ("TN", c_int)])
8 @requires(grid[1], block[1], thread[1], smem=49000)
9 def my_sgemm_kernel_3( M : int @ grid[1],
10 N : int @ grid[1],
11 K : int @ grid[1],
12 alpha : float @ grid[1],
13 A: ptr(const(float)) @ grid[1],
14 B: ptr(const(float)) @ grid[1],
15 beta : float @ grid[1],
16 C: ptr(float) @ grid[1],
17 num_blocks_N : int @ grid[1]):
18 with group(grid[1]):
19 cRow : const(int) @ block[1] = id() / num_blocks_N
20 cCol : const(int) @ block[1] = id() % num_blocks_N
21 totalResultsBlocktile: const(uint) @ grid[1] = BM * BN
22 numThreadsBlocktile: const(uint) @ grid[1] = totalResultsBlocktile / (TM * TN)
23 with partition(C, dimension=block[1], offset = cRow * BM * N + cCol * BN) as C_blk:
24 with partition(A, dimension=block[1], offset = cRow * BM * K) as A_blk:
25 with partition(B, dimension=block[1], offset = cCol * BN) as B_blk:
26 with group(block[1]):
27 As : shared(float[128 * 8]) @ block[1]
28 Bs : shared(float[128 * 8]) @ block[1]
29 threadRow : const(int) @ thread[1] = id() / (BN / TN)
30 threadCol : const(int) @ thread[1] = id() % (BN / TN)
31
32 innerRowA : const(int) @ thread[1] = id() / BK
33 innerColA : const(int) @ thread[1] = id() % BK
34 strideA : const(int) @ thread[1] = numThreadsBlocktile / BK
35
36 innerRowB : const(int) @ thread[1] = id() / BN
37 innerColB : const(int) @ thread[1] = id() % BN
38 strideB : const(int) @ thread[1] = numThreadsBlocktile / BN
39
40 threadResults : float[64] @ thread[1] = { 0 }
41 regM : float[8] @ thread[1] = { 0 } # Need to go add the {}
42 regN : float[8] @ thread[1] = { 0 }
43
44 i : int @ thread[1] = 0
45
46 for bkIdx in range(0, K, BK):
47
48 with partition(As, dimension=thread[1], offset = 0) as As_thrd:
49 with partition(Bs, dimension=thread[1], offset = 0) as Bs_thrd:
50 with group(thread[1]):
51 for loadOffset in range(0, BM, strideA):
52 As_thrd[(innerRowA + loadOffset) * BK + innerColA] = \
53 A_blk[ i * BK + (innerRowA + loadOffset) * K + innerColA]
54
55 for loadOffset in range(0, BK, strideB):
56 Bs_thrd[(innerRowB + loadOffset) * BN + innerColB] = \
57 B_blk[(i * BK * N) + (innerRowB + loadOffset) * N + innerColB]
58
59 i += 1
60
61 for dotIdx in range(0, BK, 1):
62 for i in range(0, TN, 1):
63 regM[i] = As[(threadRow * TM + i) * BK + dotIdx]
64 for i in range(0, TN, 1):
65 regN[i] = Bs[dotIdx * BN + threadCol * TN + i]
66 for resIdxM in range(0, TM, 1):
67 for resIdxN in range(0, TN, 1):
68 threadResults[resIdxM * TN + resIdxN] += regM[resIdxM] * regN[resIdxN]
69
70 for resIdxM in range(0, TM, 1):
71 for resIdxN in range(0, TN, 1):
72 with partition(C_blk, dimension=thread[1], offset = (threadRow * TM + resIdxM) * N + threadCol * TN +

resIdxN) as C_thrd:↩→
73 with group(thread[1]):
74 C_thrd[0] = alpha * threadResults[resIdxM * TN + resIdxN] + beta * C_blk[(threadRow * TM + resIdxM) *

N + threadCol * TN + resIdxN]↩→
75
76 return
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1 @prism("global")
2 @attr("__launch_bounds__((BM * BN) / (TM * TN), 1)")
3 @template([("BM", c_int),
4 ("BN", c_int),
5 ("BK", c_int),
6 ("TM", c_int),
7 ("TN", c_int)])
8 @requires(grid[1], block[1], thread[1], smem=49000)
9 def my_sgemm_kernel_4( M : int @ grid[1],
10 N : int @ grid[1],
11 K : int @ grid[1],
12 alpha : float @ grid[1],
13 A: ptr(float) @ grid[1],
14 B: ptr(float) @ grid[1],
15 beta : float @ grid[1],
16 C: ptr(float) @ grid[1],
17 num_blocks_N : int @ grid[1]):
18 with group(grid[1]):
19 cRow : const(int) @ block[1] = id() / num_blocks_N
20 cCol : const(int) @ block[1] = id() % num_blocks_N
21 totalResultsBlocktile: const(uint) @ grid[1] = BM * BN
22 numThreadsBlocktile: const(uint) @ grid[1] = totalResultsBlocktile / (TM * TN)
23 with partition(C, dimension=block[1], offset = cRow * BM * N + cCol * BN) as C_blk:
24 with partition(A, dimension=block[1], offset = cRow * BM * K) as A_blk:
25 with partition(B, dimension=block[1], offset = cCol * BN) as B_blk:
26 with group(block[1]):
27 As : shared(float[128 * 8]) @ block[1]
28 Bs : shared(float[128 * 8]) @ block[1]
29 threadRow : const(int) @ thread[1] = id() / (BN / TN)
30 threadCol : const(int) @ thread[1] = id() % (BN / TN)
31
32 innerRowA : const(int) @ thread[1] = id() / (BK / 4)
33 innerColA : const(int) @ thread[1] = id() % (BK / 4)
34 strideA : const(int) @ thread[1] = numThreadsBlocktile / BK
35
36 innerRowB : const(int) @ thread[1] = id() / (BN / 4)
37 innerColB : const(int) @ thread[1] = id() % (BN / 4)
38 strideB : const(int) @ thread[1] = numThreadsBlocktile / BN
39
40 threadResults : float[64] @ thread[1] = { 0 }
41 regM : float[8] @ thread[1] = { 0 } # Need to go add the {}
42 regN : float[8] @ thread[1] = { 0 }
43
44 i : int @ thread[1] = 0
45
46 for bkIdx in range(0, K, BK):
47
48 with partition(As, dimension=thread[1], offset = 0) as As_thrd:
49 with partition(Bs, dimension=thread[1], offset = 0) as Bs_thrd:
50 with group(thread[1]):
51
52 tmp : float4 @ thread[1] = float4_cast(A_blk[i * BK + innerRowA * K + innerColA * 4])
53 As_thrd[(innerColA * 4 + 0) * BM + innerRowA] = tmp.x
54 As_thrd[(innerColA * 4 + 1) * BM + innerRowA] = tmp.y
55 As_thrd[(innerColA * 4 + 2) * BM + innerRowA] = tmp.z
56 As_thrd[(innerColA * 4 + 3) * BM + innerRowA] = tmp.w
57
58 i += 1
59
60 for dotIdx in range(0, BK, 1):
61 for i in range(0, TN, 1):
62 regM[i] = As[dotIdx * BM + threadRow * TM + i]
63 for i in range(0, TN, 1):
64 regN[i] = Bs[dotIdx * BN + threadCol * TN + i]
65 for resIdxM in range(0, TM, 1):
66 for resIdxN in range(0, TN, 1):
67 threadResults[resIdxM * TN + resIdxN] += regM[resIdxM] * regN[resIdxN]
68
69 for resIdxM in range(0, TM, 1):
70 for resIdxN in range(0, TN, 4):
71 with partition(C_blk, dimension=thread[1], offset = (threadRow * TM + resIdxM) * N + threadCol * TN +

resIdxN) as C_thrd:↩→
72 with group(thread[1]):
73 temp : float4 = float4_cast(C_thrd[0])
74 temp.x = alpha * threadResults[resIdxM * TN + resIdxN] + beta * temp.x
75 temp.y = alpha * threadResults[resIdxM * TN + resIdxN + 1] + beta * temp.y
76 temp.z = alpha * threadResults[resIdxM * TN + resIdxN + 2] + beta * temp.z
77 temp.w = alpha * threadResults[resIdxM * TN + resIdxN + 3] + beta * temp.w
78 float4_cast[C_thrd[0]] = temp
79
80 return
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1 @prism("global")
2 @attr("__launch_bounds__(NUM_THREADS)")
3 @template([("BM", c_int),
4 ("BN", c_int),
5 ("BK", c_int),
6 ("WM", c_int),
7 ("WN", c_int),
8 ("WNITER", c_int),
9 ("TM", c_int),
10 ("TN", c_int),
11 ("NUM_THREADS", c_int),
12 ])
13 @requires(grid[1], block[1], warp[1], smem=49000)
14 def my_sgemm_kernel_5( M : int @ grid[1],
15 N : int @ grid[1],
16 K : int @ grid[1],
17 alpha : float @ grid[1],
18 A: ptr(float) @ grid[1],
19 B: ptr(float) @ grid[1],
20 beta : float @ grid[1],
21 C: ptr(float) @ grid[1],
22 num_blocks_N : int @ grid[1]):
23
24 with group(grid[1]):
25 cRow : const(int) @ block[1] = id() / num_blocks_N
26 cCol : const(int) @ block[1] = id() % num_blocks_N
27
28 WMITER : constexpr(uint) @ grid[1] = (WM * WN) / (WARPSIZE * TM * TN * WNITER)
29 WSUBM : constexpr(uint) @ grid[1] = WM / WMITER
30 WSUBN : constexpr(uint) @ grid[1] = WN / WNITER
31
32 rowStrideA : constexpr(int) @ grid[1] = (NUM_THREADS * 4) / BK
33 rowStrideB : constexpr(int) @ grid[1] = NUM_THREADS / (BN / 4)
34 with partition(C, dimension=block[1], offset = cRow * BM * N + cCol * BN) as C_blk:
35 with partition(A, dimension=block[1], offset = cRow * BM * K) as A_blk:
36 with partition(B, dimension=block[1], offset = cCol * BN) as B_blk:
37 with group(block[1]):
38 warpIdx : const(uint) @ thread[32] = id()
39 warpCol : const(uint) @ thread[32] = warpIdx % (BN / WN)
40 warpRow : const(uint) @ thread[32] = warpIdx / (BN / WN)
41 As : shared(float[128 * 16]) @ block[1]
42 Bs : shared(float[128 * 16]) @ block[1]
43
44 innerRowA : const(int) @ thread[1] = id() / (BK / 4)
45 innerColA : const(int) @ thread[1] = id() % (BK / 4)
46
47 innerRowB : const(int) @ thread[1] = id() / (BN / 4)
48 innerColB : const(int) @ thread[1] = id() % (BN / 4)
49
50 threadResults : float[128] @ thread[1] = { 0 }
51 regM : float[8] @ thread[1] = { 0 } # Need to go add the {}
52 regN : float[16] @ thread[1] = { 0 }
53 j : int @ block[1] = 0
54 for bkIdx in range(0, K, BK):
55 with partition(A_blk, dimension=block[1], offset = j * BK) as A_offset:
56 with partition(B_blk, dimension=block[1], offset = j * BK * N) as B_offset:
57 loadFromGmem_our(N, K, A_offset, B_offset, As, Bs, template=[BM, BN, BK, rowStrideA, rowStrideB])
58 processFromSmem_our(regM, regN, threadResults, As, Bs, warpRow, warpCol, template=[BM, BN, BK, WM, WN,

WMITER, WNITER, WSUBM, WSUBN, TM, TN])↩→
59 j+=1
60 pass
61
62 with partition(C_blk, dimension=warp[1], offset = warpRow * WM * N + warpCol * WN) as C_warp:
63 with group(warp[1]):
64
65 threadIdxInWarp : int @ thread[1] = id()
66 threadColInWarp : const(uint) @ thread[1] = threadIdxInWarp % (WSUBN / TN)
67 threadRowInWarp : const(uint) @ thread[1] = threadIdxInWarp / (WSUBN / TN)
68
69 for wSubRowIdx in range(0, WMITER, 1):
70 for wSubColIdx in range(0, WNITER, 1):
71 with partition(C_warp, dimension=thread[1], offset = (wSubRowIdx * WSUBM) * N + wSubColIdx * WSUBN)

as C_interim:↩→
72 for resIdxM in range(0, TM, 1):
73 for resIdxN in range(0, TN, 4):
74 with group(thread[1]):
75 tmp : float4 @ thread[1] = float4_cast(C_interim[(threadRowInWarp * TM + resIdxM) * N +

threadColInWarp * TN + resIdxN])↩→
76 i : const(int) @ thread[1] = (wSubRowIdx * TM + resIdxM) * (WNITER * TN) + wSubColIdx * TN

+ resIdxN↩→
77 tmp.x = alpha * threadResults[i + 0] + beta * tmp.x
78 tmp.y = alpha * threadResults[i + 1] + beta * tmp.y
79 tmp.z = alpha * threadResults[i + 2] + beta * tmp.z
80 tmp.w = alpha * threadResults[i + 3] + beta * tmp.w
81 float4_cast[C_interim[(threadRowInWarp * TM + resIdxM) * N + threadColInWarp * TN +

resIdxN]] = tmp↩→
82
83 return
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B.3 Single-Pass Parallel Prefix Scanwith Decoupled Look-Back
1 @prism("global")
2 @requires(grid[1], thread[1])
3 def add_m_thread(x: ptr(const(c_int)) @ grid[1],
4 y: ptr(c_int) @ grid[1],
5 m: uint32_t @ grid[1]):
6 with group(grid[1]):
7 tid : uint32_t @ thread[1] = id()
8 with partition(x, offset=tid, dimension=thread[1]) as x_thread:
9 with partition(y, offset=tid, dimension=thread[1]) as y_thread:
10 with group(thread[1]):
11 y_thread[0] = x_thread[0] + m
12 return
13
14
15 # WORK_PER_BLOCK = (8192 * 2)
16 # WARPS_PER_BLOCK = 16
17 # WARPS_PASS_CNT = (8192 * 2) / (16 * 32) = 32
18 # WARP_ENDS = (8192 * 2) / 32 = 512
19
20 @prism("device")
21 @requires(thread[1])
22 def shfl_up_sync_wrapper(val : uint32_t @ thread[1], delta : uint32_t @ thread[1]):
23 pass
24
25 @prism("device")
26 @requires(block[1], warp[16])
27 def scan_warps(x : ptr(uint32_t) @ block[1], x_shmem : ptr(uint32_t) @ block[1]):
28 with group(block[1]):
29 for i in range(0, (8192 * 2) / (16 * 32)):
30 warp_id : uint32_t @ warp[1] = id()
31 with partition(x, offset = (warp_id + i * 16) * 32, dimension = warp[1]) as x_warp:
32 with partition(x_shmem, offset = (warp_id + i * 16) * 32, dimension = warp[1]) as x_shmem_warp:
33 with group(warp[1]):
34 thread_id : uint32_t @ thread[1] = id()
35 with partition(x_warp, offset = thread_id, dimension = thread[1]) as x_thread:
36 with partition(x_shmem_warp, offset = thread_id, dimension = thread[1]) as x_shmem_thread:
37 with group(thread[1]):
38 val : uint32_t @ thread[1] = x_thread[0]
39
40 stride : uint32_t @ thread[1] = 1
41 while stride < 32:
42 received : uint32_t @ thread[1] = shfl_up_sync_wrapper(val, stride)
43 if thread_id >= stride:
44 val = received + val
45 stride *= 2
46 x_shmem_thread[0] = val
47
48 @prism("device")
49 @requires(block[1], warp[16])
50 def get_warp_ends_inclusive(x : ptr(uint32_t) @ block[1], warp_ends : ptr(uint32_t) @ block[1]):
51 with group(block[1]):
52 warp_id : uint32_t @ warp[1] = id()
53 with partition(x, offset = (warp_id) * 32 * 32, dimension = warp[1]) as x_warp:
54 with partition(warp_ends, offset = (warp_id) * 32, dimension = warp[1]) as warp_ends_warp:
55 with group(warp[1]):
56 thread_id : uint32_t @ thread[1] = id()
57 with partition(x_warp, offset = thread_id * 32, dimension = thread[1]) as x_thread:
58 with partition(warp_ends_warp, offset = thread_id, dimension = thread[1]) as warp_ends_thread:
59 with group(thread[1]):
60 warp_ends_thread[0] = x_thread[31]
61
62
63
64 @prism("device")
65 @requires(block[1], warp[16])
66 def update_with_new_data_and_writeback(x : ptr(uint32_t) @ block[1], x_shmem : ptr(uint32_t) @ block[1], warp_ends : ptr(uint32_t) @

block[1], prefix : uint32_t @ block[1]):↩→
67 with group(block[1]):
68 for i in range(0, (8192 * 2) / (16 * 32)):
69 warp_id : uint32_t @ warp[1] = id()
70 with partition(x, offset = (warp_id + i * 16) * 32, dimension = warp[1]) as x_warp:
71 with partition(x_shmem, offset = (warp_id + i * 16) * 32, dimension = warp[1]) as x_shmem_warp:
72 with group(warp[1]):
73 thread_id : uint32_t @ thread[1] = id()
74 with partition(x_warp, offset = thread_id, dimension = thread[1]) as x_thread:
75 with partition(x_shmem_warp, offset = thread_id, dimension = thread[1]) as x_shmem_thread:
76 with group(thread[1]):
77 if warp_id + i * 16 == 0:
78 x_thread[0] = prefix + x_shmem_thread[0]
79 else:
80 x_thread[0] = prefix + warp_ends[warp_id + i * 16 - 1] + x_shmem_thread[0]
81
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82 @prism("device")
83 @requires(block[1], warp[16])
84 def naive_scan_warp_ends(x : ptr(uint32_t) @ block[1], x_buf : ptr(uint32_t) @ block[1]):
85 with group(block[1]):
86 stride : uint32_t @ group[1] = 1
87 while stride < (8192 * 2 / 32):
88
89 warp_id : uint32_t @ warp[1] = id()
90 with partition(x, offset = warp_id * 32, dimension = warp[1]) as x_warp:
91 with partition(x_buf, offset = warp_id * 32, dimension = warp[1]) as x_buf_warp:
92 with group(warp[1]):
93 thread_id : uint32_t @ thread[1] = id()
94 with partition(x_warp, offset = thread_id, dimension = thread[1]) as x_thread:
95 with partition(x_buf_warp, offset = thread_id, dimension = thread[1]) as x_buf_thread:
96 with group(thread[1]):
97 if thread_id + warp_id * 32 >= stride:
98 x_buf_thread[0] = x_thread[0] + x_thread[-stride]
99 else:
100 x_buf_thread[0] = x_thread[0]
101
102 tmp : ptr(uint32_t) @ block[1] = x
103 x = x_buf
104 x_buf = tmp
105
106 stride *= 2
107 return x
108
109
110 # Implemented in raw CUDA: only exposing the necessary interfaces
111 @prism("device")
112 @requires(block[1], thread[1])
113 def write_block_aggregate(aggregate : uint32_t @ block[1], block_idx : uint32_t @ block[1], block_infos : ptr(int) @ block[1]):
114 pass
115
116 @prism("device")
117 @requires(block[1], thread[1])
118 def write_block_prefix(prefix : uint32_t @ block[1], block_idx : uint32_t @ block[1], block_infos : ptr(int) @ block[1]):
119 pass
120
121
122 @prism("device")
123 @requires(block[1], thread[1])
124 def lookback_to_prev_blocks(block_idx : uint32_t @ block[1], block_infos : ptr(int) @ block[1]):
125 pass
126
127 @prism("device")
128 @requires(grid[1])
129 def get_block_idx_from_global_counter(block_idx_counter : ptr(uint32_t) @ grid[1]):
130 pass
131
132 @prism("global")
133 @requires(grid[1], block[1], warp[16], smem=69632)
134 def scan_kernel(n : uint32_t @ grid[1], x : ptr(uint32_t) @ grid[1], block_idx_counter : ptr(uint32_t) @ grid[1], block_infos :

ptr(int) @ grid[1]):↩→
135 block_idx : uint32_t @ grid[1] = get_block_idx_from_global_counter(block_idx_counter)
136
137 with partition(x, offset = (8192 * 2) * block_idx, dimension = block[1]) as x_block:
138 with group(block[1]):
139 x_shmem: shared(uint32_t[8192 * 2]) @ block[1]
140
141 scan_warps(x_block, x_shmem)
142
143 warp_ends : shared(uint32_t[512]) @ block[1]
144 warp_ends_buf : shared(uint32_t[512]) @ block[1]
145
146 get_warp_ends_inclusive(x_shmem, warp_ends)
147 warp_ends_res : ptr(uint32_t) @ block[1] = naive_scan_warp_ends(warp_ends, warp_ends_buf)
148
149 aggregate : uint32_t @ block[1] = warp_ends_res[512 - 1]
150 write_block_aggregate(aggregate, block_idx, block_infos)
151
152 prefix : uint32_t @ block[1] = lookback_to_prev_blocks(block_idx, block_infos)
153 write_block_prefix(aggregate + prefix, block_idx, block_infos)
154
155 update_with_new_data_and_writeback(x_block, x_shmem, warp_ends_res, prefix)
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B.4 CUB Functions
1 @prism("device")
2 @requires(block[1], thread[32])
3 def block_load(input : ptr(const(int)) @ block[1],
4 output : ptr(int) @ thread[1],
5 items_per_thread : int @ block[1]):
6 with group(block[1]):
7 tid : int @ thread[32] = id()
8 with partition(input, dimension=thread[32], offset = tid * items_per_thread) as input_thrd:
9 with group(thread[32]):
10 warp_load(input_thrd, output, items_per_thread)
11
12 return

1 @prism("device")
2 @requires(thread[32])
3 def warp_load(input : ptr(const(int)) @ thread[32],
4 output : ptr(int) @ thread[1],
5 items_per_thread : int @ thread[32]):
6 with group(thread[32]):
7 tid : int @ thread[1] = id()
8 with partition(input, dimension=thread[1], offset = tid * items_per_thread) as input_thrd:
9 with group(thread[1]):
10 thread_load(input_thrd, output, items_per_thread)
11
12 return

1 @prism("device")
2 @requires(thread[1])
3 def thread_load(input : ptr(const(int)) @ thread[1],
4 output : ptr(int) @ thread[1],
5 items_per_thread : int @ thread[1]):
6 with group(thread[1]):
7 for i in range(0, items_per_thread, 1):
8 output[i] = input[i]
9 return

1 @prism("device")
2 @requires(block[1], thread[32])
3 def block_store(input : ptr(const(int)) @ thread[1],
4 output : ptr(int) @ block[1],
5 items_per_thread : int @ block[1]):
6 with group(block[1]):
7 tid : int @ thread[32] = id()
8 with partition(output, dimension=thread[32], offset = tid * items_per_thread) as output_thrd:
9 with group(thread[32]):
10 warp_store(input, output_thrd, items_per_thread)
11 return

1 @prism("device")
2 @requires(thread[32])
3 def warp_store(input : ptr(const(int)) @ thread[1],
4 output : ptr(int) @ thread[32],
5 items_per_thread : int @ thread[32]):
6 with group(thread[32]):
7 tid : int @ thread[1] = id()
8 with partition(output, dimension=thread[1], offset = tid * items_per_thread) as output_thrd:
9 with group(thread[1]):
10 thread_store(input, output_thrd, items_per_thread)
11 return

1 @prism("device")
2 @requires(thread[1])
3 def thread_store(input : ptr(const(int)) @ thread[1],
4 output : ptr(int) @ thread[1],
5 items_per_thread : int @ thread[1]):
6 with group(thread[1]):
7 for i in range(0, items_per_thread, 1):
8 output[i] = input[i]
9 return
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B.5 H100MatrixMultiplication
1 @prism("global")
2 @attr(" __launch_bounds__(128*3) ")
3 @requires(grid[1], block[1], warp[12], smem=227000)
4 def my_h100_match_no_tail(
5 M: int @ grid[1],
6 N: int @ grid[1],
7 K: int @ grid[1],
8 C: ptr(bf16) @ grid[1],
9 tensorMapA: const(CUtensorMap) @ grid[1],
10 tensorMapB: const(CUtensorMap) @ grid[1]):
11
12 with group(grid[1]):
13 BM : constexpr(int) @ grid[1] = 128
14 BN : constexpr(int) @ grid[1] = 256
15 BK : constexpr(int) @ grid[1] = 64
16 NUM_THREADS : constexpr(int) @ grid[1] = 128*3
17 QSIZE : constexpr(int) @ grid[1] = 4
18 NUM_SM : constexpr(int) @ grid[1] = 128
19
20 WGMMA_M : constexpr(int) @ grid[1] = 64
21 WGMMA_K : constexpr(int) @ grid[1] = 16
22 WGMMA_N : constexpr(int) @ grid[1] = BN
23 num_consumers : constexpr(int) @ grid[1] = (NUM_THREADS / 128) - 1
24 B_WG_M : constexpr(int) @ grid[1] = BM / num_consumers
25
26 TM : constexpr(int) @ grid[1] = 16
27 TN : constexpr(int) @ grid[1] = 8
28 schedule_block : int @ block[1] = id()
29
30 with partition(C, offset=0, dimension=block[1]) as block_C:
31 with group(block[1]):
32
33 # Allocate SA
34 # sA[QSIZE][BK*BM]
35 sA_slot0 : shared(bf16[64* 128], align=128) @ block[1]
36 sA_slot1 : shared(bf16[64* 128]) @ block[1]
37 sA_slot2 : shared(bf16[64* 128]) @ block[1]
38 sA_slot3 : shared(bf16[64* 128]) @ block[1]
39
40 # Allocate SB
41 # sB[QSIZE][BK*BN]
42 sB_slot0 : shared(bf16[64* 256], align=128) @ block[1]
43 sB_slot1 : shared(bf16[64* 256]) @ block[1]
44 sB_slot2 : shared(bf16[64* 256]) @ block[1]
45 sB_slot3 : shared(bf16[64* 256]) @ block[1]
46
47
48 num_blocks_k : const(int) @ block[1] = K / BK
49 wg_idx : int @ warp[4] = id()
50 blk_thrd_id : int @ thread[1] = id()
51
52
53 tid : int @ thread[1] = id() % 128
54 is_producer : bool @ warp[4] = wg_idx == 0
55
56 num_block_m : int @ block[1] = 0
57 num_block_n : int @ block[1] = 0
58
59 with group(warp[4]):
60 if (is_producer):
61 pass
62 else:
63 wg_idx = wg_idx - 1
64
65 schedule_it : int @ block[1] = 0
66 total_blocks_m : int @ block[1] = (((M + BM) - 1) / BM)
67 total_blocks_n : int @ block[1] = (((N + BN) - 1) / BN)
68 unsafe("assert(CEIL_DIV(M, BM)%TM == 0 && total_blocks_n%TN == 0);")
69
70 while(true):
71 num : int @ block[1] = ((schedule_it * NUM_SM) + schedule_block)
72 if (num >= (total_blocks_m * total_blocks_n)):
73 break
74 cur_tile : int @ block[1] = (num / (TM * TN))
75 cur_tile_pos : int @ block[1] = (num % (TM * TN))
76 num_block_m = (TM * (cur_tile / (total_blocks_n / TN)))
77 num_block_n = (TN * (cur_tile % (total_blocks_n / TN)))
78 num_block_m += (cur_tile_pos / TN)
79 num_block_n += (cur_tile_pos % TN)
80 schedule_it += 1
81 d : c_float[1][16][8] @ thread[1]
82
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83 with group(thread[1]):
84 d_ptr : ptr(float) @ thread[1]
85 # TODO: ANNOYONG TO NOT HAVE TO SET EACH INDIVIDUAL TO 0.
86 unsafe("d_ptr = (float *)d;")
87 memset_wrapper(d_ptr, 0, 1 * 16 * 8 * 4)
88
89 # Now remove these registers...
90 with group(warp[4]):
91 if (is_producer):
92 num_regs : constexpr(int) @ warp[4] = 24 if (num_consumers <= 2) else 32
93 warpgroup_reg_dealloc(template=[num_regs])
94 pass
95 else:
96 num_regs_p : constexpr(int) @ warp[4] = 256 if num_consumers == 1 else (240 if num_consumers == 2 else 160)
97 warpgroup_reg_alloc(template=[num_regs_p])
98 pass
99
100 num_blocks_k_main : const(int) @ block[1] = (num_blocks_k / 4) * 4
101
102 for block_k_iter in range(0, num_blocks_k_main, 4):
103
104 with claim(sA_slot0, scope=thread[1], offset=0) as sA_new:
105 with claim(sA_slot1, scope=thread[1], offset=0) as sA_new1:
106 with claim(sA_slot2, scope=thread[1], offset=0) as sA_new2:
107 with claim(sB_slot0, scope=thread[1], offset=0) as sB_new:
108 with claim(sB_slot1, scope=thread[1], offset=0) as sB_new1:
109 with claim(sB_slot2, scope=thread[1], offset=0) as sB_new2:
110 with claim(sA_slot3, scope=thread[1], offset=0) as sA_new3:
111 with claim(sB_slot3, scope=thread[1], offset=0) as sB_new3:
112 match warp:
113 case 8:
114 pass
115 case 4:
116 match thread:
117 case 1:
118 expect_bytes(full_0, (BK*BN+BK*BM)*2)
119 # TODO: BECOMES AN INTRINSIC CALL!
120 ta_void_ptr : ptr(const(void)) @ thread[1]
121 unsafe("ta_void_ptr = &tensorMapA;")
122 load_async(sA_new, ta_void_ptr, full_0, (block_k_iter+0)*BK, num_block_m*BM)
123 tb_void_ptr : ptr(const(void)) @ thread[1]
124 unsafe("tb_void_ptr = &tensorMapB;")
125 load_async(sB_new, tb_void_ptr, full_0, (block_k_iter+0)*BK, num_block_n*BN)
126
127
128 expect_bytes(full_1, (BK*BN+BK*BM)*2)
129 load_async(sA_new1, ta_void_ptr, full_1, (block_k_iter+1)*BK, num_block_m*BM)
130 load_async(sB_new1, tb_void_ptr, full_1, (block_k_iter+1)*BK, num_block_n*BN)
131
132 expect_bytes(full_2, (BK*BN+BK*BM)*2)
133 load_async(sA_new2, ta_void_ptr, full_2, (block_k_iter+2)*BK, num_block_m*BM)
134 load_async(sB_new2, tb_void_ptr, full_2, (block_k_iter+2)*BK, num_block_n*BN)
135
136 expect_bytes(full_3, (BK*BN+BK*BM)*2)
137 load_async(sA_new3, ta_void_ptr, full_3, (block_k_iter+3)*BK, num_block_m*BM)
138 load_async(sB_new3, tb_void_ptr, full_3, (block_k_iter+3)*BK, num_block_n*BN)
139
140
141 with claim(sA_slot0, scope=warp[8], offset=0) as wgmma_sA:
142 with claim(sA_slot1, scope=warp[8], offset=0) as sA_1_producer:
143 with claim(sA_slot2, scope=warp[8], offset=0) as sA_2_producer:
144 with claim(sB_slot0, scope=warp[8], offset=0) as wgmma_sB:
145 with claim(sB_slot1, scope=warp[8], offset=0) as sB_1_producer:
146 with claim(sB_slot2, scope=warp[8], offset=0) as sB_2_producer:
147 with claim(sA_slot3, scope=warp[8], offset=0) as sA_3_producer:
148 with claim(sB_slot3, scope=warp[8], offset=0) as sB_3_producer:
149 match warp:
150 case 8:
151 with group(warp[4]):
152 with wgmma_async():
153 for m_it in range(0, B_WG_M/WGMMA_M, 1):
154 index_a : int @ warp[4] = m_it * BM
155 index_b : int @ warp[4] = m_it * BN
156 unsafe("#pragma unroll")
157 for k_it in range(0, 64/WGMMA_K, 1):
158 intrinsic.wgmma256(wgmma_sA[64*(m_it + wg_idx*B_WG_M/WGMMA_M)*WGMMA_M +

index_a + k_it*WGMMA_K], wgmma_sB[(index_b + (k_it *
WGMMA_K))], 1, 1, 1, 0, 0, out=[d[m_it]])

↩→
↩→

159
160 with wgmma_async():
161 for m_it in range(0, B_WG_M/WGMMA_M, 1):
162 index_a2 : int @ warp[4] = m_it * BM
163 # TOTALLY OKAY! I just don't want to add support for this the compiler right now
164 unsafe("#pragma unroll")



48 Manya Bansal, Daniel Sainati, JosephW. Cutler, Saman Amarasinghe, and Jonathan Ragan-Kelley

165 for k_it in range(0, 64/WGMMA_K, 1):
166 intrinsic.wgmma256(sA_1_producer[64*(m_it + wg_idx*B_WG_M/WGMMA_M)*WGMMA_M

+ index_a2 + k_it*WGMMA_K], sB_1_producer[(index_b2 + (k_it *
WGMMA_K))], 1, 1, 1, 0, 0, out=[d[m_it]])

↩→
↩→

167
168
169
170 with wgmma_async():
171 for m_it in range(0, B_WG_M/WGMMA_M, 1):
172 index_a3 : int @ warp[4] = m_it * BM
173 index_b3 : int @ warp[4] = m_it * BN
174 unsafe("#pragma unroll")
175 for k_it in range(0, 64/WGMMA_K, 1):
176 intrinsic.wgmma256(sA_2_producer[64*(m_it + wg_idx*B_WG_M/WGMMA_M)*WGMMA_M

+ index_a3 + k_it*WGMMA_K], sB_2_producer[(index_b3 + (k_it *
WGMMA_K))], 1, 1, 1, 0, 0, out=[d[m_it]])

↩→
↩→

177
178
179 with wgmma_async():
180 for m_it in range(0, B_WG_M/WGMMA_M, 1):
181 index_a4 : int @ warp[4] = m_it * BM
182 index_b4 : int @ warp[4] = m_it * BN
183 unsafe("#pragma unroll")
184 for k_it in range(0, 64/WGMMA_K, 1):
185 intrinsic.wgmma256(sA_3_producer[64*(m_it + wg_idx*B_WG_M/WGMMA_M)*WGMMA_M

+ index_a4 + k_it*WGMMA_K], sB_3_producer[(index_b4 + (k_it *
WGMMA_K))], 1, 1, 1, 0, 0, out=[d[m_it]])

↩→
↩→

186 case 4:
187 pass
188
189
190
191 with claim(block_C, scope=warp[8], offset=num_block_n*BN*M + num_block_m*BM) as c_consumer:
192 match warp:
193 case 8:
194 with partition(c_consumer, dimension=thread[1], offset=0) as c_thrd:
195 with group(warp[4]):
196 warp_id: int @ warp[1] = id()
197 with group(warp[1]):
198 lane : int @ thread[1] = id()
199 row : int @ thread[1] = warp_id * 16 + lane / 4
200 unsafe("#pragma unroll")
201 for m_it in range(0, B_WG_M/WGMMA_M, 1):
202 yo : int @ warp[1] = m_it*WGMMA_M + wg_idx*B_WG_M
203 with group(thread[1]):
204 if (row + yo + num_block_m*BM >= M):
205 continue
206 for w in range(0, WGMMA_N, 16):
207 if (w < w < N-num_block_n*BN):
208 col : int @ thread[1] = w + 2*(tid % 4);
209 c_thrd[col * M + row + yo] = d[m_it][w/16][0]
210 c_thrd[(col + 1) * M + (row) + yo] = d[m_it][w/16][1]
211 c_thrd[(col) * M + (row + 8) + yo] = d[m_it][w/16][2]
212 c_thrd[(col + 1) * M + (row + 8) + yo] = d[m_it][w/16][3]
213
214 c_thrd[(col + 8) * M + (row + 0) + yo] = d[m_it][w/16][4]
215 c_thrd[(col + 9) * M + (row + 0) + yo] = d[m_it][w/16][5]
216 c_thrd[(col + 8) * M + (row + 8) + yo] = d[m_it][w/16][6]
217 c_thrd[(col + 9) * M + (row + 8) + yo] = d[m_it][w/16][7]
218 case 4:
219 pass
220
221 return
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